中文版 | English
题名

An Energy-Efficient Mixed-Bit CNN Accelerator with Column Parallel Readout for ReRAM-based In-memory Computing

作者
发表日期
2022
DOI
发表期刊
ISSN
2156-3365
EISSN
2156-3365
卷号PP期号:99页码:1-1
摘要

Computing-In-memory (CIM) accelerators have the characteristics of storage and computing integration, which has the potential to break through the limit of Moore's law and the bottleneck of Von-Neumann architecture for convolutional neural networks (CNN) implementation improvement. However, the performance of CIM accelerators is still limited by conventional CNN architectures and inefficient readouts. To increase energy-efficient performance, an optimized CNN model is required and a low-power column parallel readout is necessary for edge-computing hardware. In this work, an ReRAM-based CNN accelerator is designed. Mixed-bit operations from 1 bit to 8 bits are supported by an effective bitwidth configuration scheme to implement Neural Architecture Search (NAS)-optimized layer-wise multi-bit CNNs. Besides, column-parallel readout is achieved with excellent energy-efficient performance by a variation-reduction accumulation mechanism and low-power readout circuits. Additionally, we further explore systolic data reuse in an ReRAM-based PE array. Experiments are implemented on NAS-optimized ResNet-18. Benchmarks show that the proposed ReRAM accelerator can achieve peak energy efficiency of 2490.32 TOPS/W for 1-bit operation and average energy efficiency of 479.37 TOPS/W for 1 similar to 8-bit operations with evaluating NAS-optimized multi-bitwidth CNNs. When compared with the state-of-the-art works, the proposed accelerator shows at least 14.18x improvement on energy efficiency.

关键词
相关链接[IEEE记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of the Ministry of Science and Technology[2021YFE0204000] ; Guangdong Provincial Key Laboratory Program from the Department of Science and Technology of Guangdong Province[2021B1212040001] ; Shenzhen Science and Technology Program[KQTD20200820113051096]
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:000927879900013
出版者
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9911654
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406106
专题工学院_深港微电子学院
作者单位
1.Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
2.Guangdong Provincial Engineering Research Center of 3-D Integration and Engineering Research Center of Integrated Circuits for Next-Generation Communications, Ministry of Education, School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Dingbang Liu,Haoxiang Zhou,Wei Mao,et al. An Energy-Efficient Mixed-Bit CNN Accelerator with Column Parallel Readout for ReRAM-based In-memory Computing[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2022,PP(99):1-1.
APA
Dingbang Liu.,Haoxiang Zhou.,Wei Mao.,Jun Liu.,Yuliang Han.,...&Hao Yu.(2022).An Energy-Efficient Mixed-Bit CNN Accelerator with Column Parallel Readout for ReRAM-based In-memory Computing.IEEE Journal on Emerging and Selected Topics in Circuits and Systems,PP(99),1-1.
MLA
Dingbang Liu,et al."An Energy-Efficient Mixed-Bit CNN Accelerator with Column Parallel Readout for ReRAM-based In-memory Computing".IEEE Journal on Emerging and Selected Topics in Circuits and Systems PP.99(2022):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
an.pdf(625KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dingbang Liu]的文章
[Haoxiang Zhou]的文章
[Wei Mao]的文章
百度学术
百度学术中相似的文章
[Dingbang Liu]的文章
[Haoxiang Zhou]的文章
[Wei Mao]的文章
必应学术
必应学术中相似的文章
[Dingbang Liu]的文章
[Haoxiang Zhou]的文章
[Wei Mao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。