中文版 | English
题名

Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis

作者
发表日期
2022
DOI
发表期刊
ISSN
1941-0026
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要
With the rising number of large-scale multiobjective optimization problems (LSMOPs) from academia and industries, some multiobjective evolutionary algorithms (MOEAs) with different decision variable handling strategies have been proposed. Decision variable analysis (DVA) is widely used in large-scale optimization, aiming at identifying the connection between each decision variable and the objectives, and grouping those interacting decision variables to reduce the complexity of LSMOPs. Despite their effectiveness, existing DVA techniques require the unbearable cost of function evaluations for solving LSMOPs. We propose a reformulation-based approach for efficient DVA to address this deficiency. Then a large-scale MOEA is proposed based on reformulated DVA, namely, LERD. Specifically, the DVA process is reformulated into an optimization problem with binary decision variables, aiming to approximate different grouping results. Afterwards, each group of decision variables is used for convergence-related or diversity-related optimization. The effectiveness and efficiency of the reformulation-based DVA are validated by replacing the corresponding DVA techniques in two large-scale MOEAs. Experiments in comparison with six state-of-the-art large-scale MOEAs on LSMOPs with up to 2000 decision variables have shown the promising performance of LERD.
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85139834297
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9914641
引用统计
被引频次[WOS]:27
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406115
专题工学院_计算机科学与工程系
作者单位
1.School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
2.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
3.School of Artificial Intelligence and Automation, Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, Huazhong University of Science and Technology, Wuhan, China
4.Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
5.Department of Computer Science, University of Surrey, Guildford, U.K.
推荐引用方式
GB/T 7714
Cheng He,Ran Cheng,Lianghao Li,et al. Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis[J]. IEEE Transactions on Evolutionary Computation,2022,PP(99):1-1.
APA
Cheng He,Ran Cheng,Lianghao Li,Kay Chen Tan,&Yaochu Jin.(2022).Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis.IEEE Transactions on Evolutionary Computation,PP(99),1-1.
MLA
Cheng He,et al."Large-scale Multiobjective Optimization via Reformulated Decision Variable Analysis".IEEE Transactions on Evolutionary Computation PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng He]的文章
[Ran Cheng]的文章
[Lianghao Li]的文章
百度学术
百度学术中相似的文章
[Cheng He]的文章
[Ran Cheng]的文章
[Lianghao Li]的文章
必应学术
必应学术中相似的文章
[Cheng He]的文章
[Ran Cheng]的文章
[Lianghao Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。