中文版 | English
题名

Laser ultrasonics and machine learning for automatic defect detection in metallic components

作者
通讯作者Guo,Shifeng
发表日期
2023
DOI
发表期刊
ISSN
0963-8695
EISSN
1879-1174
卷号133
摘要
This paper develops an automatic and reliable nondestructive evaluation (NDE) technique that enables quantification of the width and depth of subsurface defects of metallic components simultaneously by using non-contact laser ultrasonic technique and identified machine learning (ML) algorithm. Twenty-two specimens with various subsurface defect dimensions are designed and fabricated for laser ultrasonic experiments, and a total of 220 labeled laser ultrasonic signals are obtained for training and verifying ML models. Twelve features, including four time-domain features (maximum, minimum, peak-to-peak, and |Neg|/Pos value of the laser generated Rayleigh ultrasonic waves) and eight wavelet energy features, are identified and extracted as sensitive feature vectors for establishing the dataset. The principal component analysis (PCA) is implemented as dimensionality reduction method of feature vectors to optimize the recognition algorithm and improve the detection accuracy. Three widely used ML models in NDE, adaptive boosting (Adaboost), extreme gradient boosting (XGBboost), and support vector machine (SVM), combined with the PCA are proposed and compared for detecting both the width and depth of subsurface defects. The PCA-XGBoost achieves the highest recognition rate of 98.48%, and is therefore identified as the most effective approach for analyzing laser-ultrasonic signals. Unlike published reports, the proposed model is trained and evaluated with experimental data covered various classification labels, which is more adaptive and reliable in practical application than the models established using simulated data or limited experimental data. In other applications, as long as sufficient laser ultrasonic data with regards to various defect properties (dimensions, orientations, locations, shapes, etc.) can be acquired, the developed approach can realize accurate detection of corresponding defects.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Guangdong Science and Technology Department[2019QN01H430];Guangdong Science and Technology Department[2019TQ05Z654];Reuter Foundation[2020A1515110218];National Natural Science Foundation of China[52071332];Shenzhen Institutes of Advanced Technology Innovation Program for Excellent Young Researchers[E1G048];Shenzhen Graduate School, Peking University[JCYJ 20180507182239617];Shenzhen Graduate School, Peking University[JCYJ20210324101200002];National Natural Science Foundation of China[U1813222];National Natural Science Foundation of China[U20A20283];Shenzhen Graduate School, Peking University[ZDSYS20190902093209795];
WOS研究方向
Materials Science
WOS类目
Materials Science, Characterization & Testing
WOS记录号
WOS:000868930400002
出版者
EI入藏号
20224112854643
EI主题词
Adaptive boosting ; Classification (of information) ; Defects ; Learning systems ; Machine components ; Nondestructive examination ; Support vector machines ; Time domain analysis ; Ultrasonic testing ; Wavelet transforms
EI分类号
Machine Components:601.2 ; Information Theory and Signal Processing:716.1 ; Computer Software, Data Handling and Applications:723 ; Ultrasonic Applications:753.3 ; Information Sources and Analysis:903.1 ; Mathematics:921 ; Mathematical Transformations:921.3 ; Mathematical Statistics:922.2 ; Materials Science:951
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85139279349
来源库
Scopus
引用统计
被引频次[WOS]:24
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406149
专题工学院_电子与电气工程系
作者单位
1.Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China
2.Guangdong Provincial Key Lab of Robotics and Intelligent System,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China
3.University of Chinese Academy of Sciences,Beijing,100049,China
4.College of Mechanical and Electronic Engineering,Shandong Agricultural University,Tai'an,271018,China
5.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Lv,Gaolong,Guo,Shifeng,Chen,Dan,et al. Laser ultrasonics and machine learning for automatic defect detection in metallic components[J]. NDT & E INTERNATIONAL,2023,133.
APA
Lv,Gaolong.,Guo,Shifeng.,Chen,Dan.,Feng,Haowen.,Zhang,Kaixing.,...&Feng,Wei.(2023).Laser ultrasonics and machine learning for automatic defect detection in metallic components.NDT & E INTERNATIONAL,133.
MLA
Lv,Gaolong,et al."Laser ultrasonics and machine learning for automatic defect detection in metallic components".NDT & E INTERNATIONAL 133(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lv,Gaolong]的文章
[Guo,Shifeng]的文章
[Chen,Dan]的文章
百度学术
百度学术中相似的文章
[Lv,Gaolong]的文章
[Guo,Shifeng]的文章
[Chen,Dan]的文章
必应学术
必应学术中相似的文章
[Lv,Gaolong]的文章
[Guo,Shifeng]的文章
[Chen,Dan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。