题名 | 3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway |
作者 | |
通讯作者 | Wang,Lin |
发表日期 | 2022-12-01
|
DOI | |
发表期刊 | |
ISSN | 0141-8130
|
EISSN | 1879-0003
|
卷号 | 222页码:1175-1191 |
摘要 | Diabetic individuals are frequently associated with increased fracture risk and poor bone healing capacity, and the treatment of diabetic bone defects remains a great challenge in orthopedics. In this study, an antioxidant hydrogel was developed using reduced glutathione grafted gelatine methacrylate (GelMA-g-GSH), followed by 3D printing to form a tissue engineering scaffold, which possessed appropriate mechanical property and good biocompatibility. In vitro studies displayed that benefitting from the sustained delivery of reduced glutathione, GelMA-g-GSH scaffold enabled to suppress the overproduction of reactive oxygen species (ROS) and reduce the oxidative stress of cells. Osteogenic experiments showed that GelMA-g-GSH scaffold exhibited excellent osteogenesis performance, with the elevated expression levels of osteogenesis-related genes and proteins. Further, RNA-sequencing revealed that activation of PI3K/Akt signaling pathway of MC3T3-E1 seeded on GelMA-g-GSH scaffold may be the underlying mechanism in promoting osteogenesis. In vivo, diabetic mice calvarial defects experiment demonstrated enhanced bone regeneration after the implantation of GelMA-g-GSH scaffold, as shown by micro-CT and histological analysis. In summary, 3D-printed GelMA-g-GSH scaffold can not only scavenge ROS, but also promote proliferation and differentiation of osteoblasts by activating PI3K/Akt signaling pathway, thereby accelerating bone repair under diabetes. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Basic and Applied Basic Research Foundation of Guangdong Province[2022A1515012373];National Natural Science Foundation of China[81972045];
|
WOS研究方向 | Biochemistry & Molecular Biology
; Chemistry
; Polymer Science
|
WOS类目 | Biochemistry & Molecular Biology
; Chemistry, Applied
; Polymer Science
|
WOS记录号 | WOS:000867226000002
|
出版者 | |
ESI学科分类 | BIOLOGY & BIOCHEMISTRY
|
Scopus记录号 | 2-s2.0-85139355609
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:24
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406160 |
专题 | 南方科技大学医学院 南方科技大学医院 |
作者单位 | 1.School of Medicine,Southern University of Science and Technology,Shenzhen,No. 1088 Xueyuan Avenue, Guangdong Province,518055,China 2.Southern University of Science and Technology Hospital,Shenzhen,6019 Liuxian Avenue,518055,China |
第一作者单位 | 南方科技大学医学院 |
通讯作者单位 | 南方科技大学医学院; 南方科技大学医院 |
第一作者的第一单位 | 南方科技大学医学院 |
推荐引用方式 GB/T 7714 |
Wang,Lulu,Shen,Mingkui,Hou,Qiaodan,et al. 3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway[J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,2022,222:1175-1191.
|
APA |
Wang,Lulu,Shen,Mingkui,Hou,Qiaodan,Wu,Zimei,Xu,Jing,&Wang,Lin.(2022).3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway.INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,222,1175-1191.
|
MLA |
Wang,Lulu,et al."3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway".INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES 222(2022):1175-1191.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论