中文版 | English
题名

3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway

作者
通讯作者Wang,Lin
发表日期
2022-12-01
DOI
发表期刊
ISSN
0141-8130
EISSN
1879-0003
卷号222页码:1175-1191
摘要
Diabetic individuals are frequently associated with increased fracture risk and poor bone healing capacity, and the treatment of diabetic bone defects remains a great challenge in orthopedics. In this study, an antioxidant hydrogel was developed using reduced glutathione grafted gelatine methacrylate (GelMA-g-GSH), followed by 3D printing to form a tissue engineering scaffold, which possessed appropriate mechanical property and good biocompatibility. In vitro studies displayed that benefitting from the sustained delivery of reduced glutathione, GelMA-g-GSH scaffold enabled to suppress the overproduction of reactive oxygen species (ROS) and reduce the oxidative stress of cells. Osteogenic experiments showed that GelMA-g-GSH scaffold exhibited excellent osteogenesis performance, with the elevated expression levels of osteogenesis-related genes and proteins. Further, RNA-sequencing revealed that activation of PI3K/Akt signaling pathway of MC3T3-E1 seeded on GelMA-g-GSH scaffold may be the underlying mechanism in promoting osteogenesis. In vivo, diabetic mice calvarial defects experiment demonstrated enhanced bone regeneration after the implantation of GelMA-g-GSH scaffold, as shown by micro-CT and histological analysis. In summary, 3D-printed GelMA-g-GSH scaffold can not only scavenge ROS, but also promote proliferation and differentiation of osteoblasts by activating PI3K/Akt signaling pathway, thereby accelerating bone repair under diabetes.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Basic and Applied Basic Research Foundation of Guangdong Province[2022A1515012373];National Natural Science Foundation of China[81972045];
WOS研究方向
Biochemistry & Molecular Biology ; Chemistry ; Polymer Science
WOS类目
Biochemistry & Molecular Biology ; Chemistry, Applied ; Polymer Science
WOS记录号
WOS:000867226000002
出版者
ESI学科分类
BIOLOGY & BIOCHEMISTRY
Scopus记录号
2-s2.0-85139355609
来源库
Scopus
引用统计
被引频次[WOS]:24
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406160
专题南方科技大学医学院
南方科技大学医院
作者单位
1.School of Medicine,Southern University of Science and Technology,Shenzhen,No. 1088 Xueyuan Avenue, Guangdong Province,518055,China
2.Southern University of Science and Technology Hospital,Shenzhen,6019 Liuxian Avenue,518055,China
第一作者单位南方科技大学医学院
通讯作者单位南方科技大学医学院;  南方科技大学医院
第一作者的第一单位南方科技大学医学院
推荐引用方式
GB/T 7714
Wang,Lulu,Shen,Mingkui,Hou,Qiaodan,et al. 3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway[J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,2022,222:1175-1191.
APA
Wang,Lulu,Shen,Mingkui,Hou,Qiaodan,Wu,Zimei,Xu,Jing,&Wang,Lin.(2022).3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway.INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES,222,1175-1191.
MLA
Wang,Lulu,et al."3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway".INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES 222(2022):1175-1191.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Lulu]的文章
[Shen,Mingkui]的文章
[Hou,Qiaodan]的文章
百度学术
百度学术中相似的文章
[Wang,Lulu]的文章
[Shen,Mingkui]的文章
[Hou,Qiaodan]的文章
必应学术
必应学术中相似的文章
[Wang,Lulu]的文章
[Shen,Mingkui]的文章
[Hou,Qiaodan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。