中文版 | English
题名

Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method

作者
通讯作者Shi,Haiyun
发表日期
2022-10-01
DOI
发表期刊
ISSN
0022-1694
EISSN
1879-2707
卷号613
摘要
Model development in groundwater simulation and physics informed deep learning (DL) has been advancing separately with limited integration. This study develops a general hybrid model for groundwater level (GWL) simulations, wherein water balance-based groundwater processes are embedded as physics constrained recurrent neural layers into prevalent DL architectures. Because of the automatic parameterizing process, physics-informed deep learning algorithm (DLA) equips the hybrid model with enhanced abilities of inferring geological structures of catchment and unobserved groundwater-related processes implicitly. The main purposes of this study are: 1) to explore an optimized data-driven method as alternative to complicated groundwater models; 2) to improve the awareness of hydrological knowledge of DL model for lumped GWL simulation; and 3) to explore the lumped data-driven groundwater models for cross-region applications. The 91 illustrative cases of GWL modeling across the middle eastern continental United States (CONUS) demonstrate that the hybrid model outperforms the pure DL models in terms of prediction accuracy, generality, and robustness. More specifically, the hybrid model outperforms the pure DL models in 78 % of catchments with the improved Δ NSE = 0.129. Meanwhile, the hybrid model simulates more stably with different input strategies. This study reveals the superiority and powerful simulation ability of the DL model with physical constraints, which increases trust in data-driven approaches on groundwater modellings.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
[51909117] ; [JCYJ20210324105014039]
WOS研究方向
Engineering ; Geology ; Water Resources
WOS类目
Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:000868341800002
出版者
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85139037756
来源库
Scopus
引用统计
被引频次[WOS]:37
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406192
专题工学院_环境科学与工程学院
作者单位
1.Department of Civil and Environmental Engineering,National University of Singapore,Singapore
2.State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,China
3.Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,China
4.Center for Climate Physics,Institute for Basic Science,Busan,South Korea
5.Department of Computational Hydrosystems,Helmholtz Centre for Environmental Research,Leipzig,Germany
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Cai,Hejiang,Liu,Suning,Shi,Haiyun,et al. Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method[J]. JOURNAL OF HYDROLOGY,2022,613.
APA
Cai,Hejiang,Liu,Suning,Shi,Haiyun,Zhou,Zhaoqiang,Jiang,Shijie,&Babovic,Vladan.(2022).Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method.JOURNAL OF HYDROLOGY,613.
MLA
Cai,Hejiang,et al."Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method".JOURNAL OF HYDROLOGY 613(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cai,Hejiang]的文章
[Liu,Suning]的文章
[Shi,Haiyun]的文章
百度学术
百度学术中相似的文章
[Cai,Hejiang]的文章
[Liu,Suning]的文章
[Shi,Haiyun]的文章
必应学术
必应学术中相似的文章
[Cai,Hejiang]的文章
[Liu,Suning]的文章
[Shi,Haiyun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。