中文版 | English
题名

CGNet-assisted Automatic Vessel Segmentation for Optical Coherence Tomography Angiography

作者
通讯作者Mo,Jianhua
发表日期
2022
DOI
发表期刊
ISSN
1864-063X
EISSN
1864-0648
摘要
Automatic optical coherence tomography angiography (OCTA) vessel segmentation is of great significance to retinal disease diagnoses. Due to the complex vascular structure, however, various existing factors make the segmentation task challenging. This paper reports a novel end-to-end three-stage channel and position attention (CPA) module integrated graph reasoning convolutional neural network (CGNet) for retinal OCTA vessel segmentation. Specifically, in the coarse stage, both CPA and graph reasoning network (GRN) modules are integrated in between a U-shaped neural network encoder and decoder to acquire vessel confidence maps. After being directed into a fine stage, such confidence maps are concatenated with the original image and the generated fine image map as a 3-channel image to refine retinal micro-vasculatures. Finally, both the fine and refined images are fused at the refining stage as the segmentation results. Experiments with different public datasets are conducted to verify the efficacy of the proposed CGNet. Results show that by employing the end-to-end training scheme and the integrated CPA and GRN modules, CGNet achieves 94.29% and 85.62% in area under the ROC curve (AUC) for the two different datasets, outperforming the state-of-the-art existing methods with both improved operability and reduced complexity in different cases. Code is available at https://github.com/GE-123-cpu/CGnet-for-vessel-segmentation.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000821530200001
EI入藏号
20222812334950
EI主题词
Angiography ; Complex networks ; Convolution ; Image segmentation ; Network coding ; Ophthalmology ; Optical tomography
EI分类号
Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Computer Systems and Equipment:722 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85133514415
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406193
专题工学院_电子与电气工程系
作者单位
1.School of Automation,Northwestern Polytechnical University,Xi'an,China
2.Shenzhen Research Institute of Northwestern Polytechnical University,Shenzhen,Guangdong,China
3.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
4.School of Electrical and Electronic Engineering,Nanyang Technological University,Singapore,Singapore
5.School of Electronics and Information Engineering,Soochow University,Suzhou,China
推荐引用方式
GB/T 7714
Yu,Xiaojun,Ge,Chenkun,Aziz,Muhammad Zulkifal,et al. CGNet-assisted Automatic Vessel Segmentation for Optical Coherence Tomography Angiography[J]. Journal of Biophotonics,2022.
APA
Yu,Xiaojun.,Ge,Chenkun.,Aziz,Muhammad Zulkifal.,Li,Mingshuai.,Shum,Perry Ping.,...&Mo,Jianhua.(2022).CGNet-assisted Automatic Vessel Segmentation for Optical Coherence Tomography Angiography.Journal of Biophotonics.
MLA
Yu,Xiaojun,et al."CGNet-assisted Automatic Vessel Segmentation for Optical Coherence Tomography Angiography".Journal of Biophotonics (2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu,Xiaojun]的文章
[Ge,Chenkun]的文章
[Aziz,Muhammad Zulkifal]的文章
百度学术
百度学术中相似的文章
[Yu,Xiaojun]的文章
[Ge,Chenkun]的文章
[Aziz,Muhammad Zulkifal]的文章
必应学术
必应学术中相似的文章
[Yu,Xiaojun]的文章
[Ge,Chenkun]的文章
[Aziz,Muhammad Zulkifal]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。