中文版 | English
题名

Extensions of ADMM for separable convex optimization problems with linear equality or inequality constraints

作者
通讯作者Yuan,Xiaoming
发表日期
2022
来源专著
摘要
The alternating direction method of multipliers (ADMM) proposed by Glowinski and Marrocco is a benchmark algorithm for two-block separable convex optimization problems with linear equality constraints. It has been modified, specified, and generalized from various perspectives to tackle more concrete or complicated application problems. Despite its versatility and phenomenal popularity, it remains unknown whether or not the ADMM can be extended to separable convex optimization problems with linear inequality constraints. In this paper, we lay down the foundation of how to extend the ADMM to two-block and multiple-block (more than two blocks) separable convex optimization problems with linear inequality constraints. From a high-level and methodological perspective, we propose a unified framework of algorithmic design and a roadmap for the convergence analysis in the context of variational inequalities, based on which it is possible to design a series of concrete ADMM-based algorithms with provable convergence in the prediction-correction structure. The proposed algorithmic framework and roadmap for the convergence analysis are eligible to various convex optimization problems with different degrees of separability, in which both linear equality and linear inequality constraints can be included.
关键词
ISSN
1570-8659
Scopus记录号
2-s2.0-85139302891
DOI
相关链接[Scopus记录]
语种
英语
学校署名
其他
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型著作章节
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406248
专题理学院_数学系
作者单位
1.Department of Mathematics,Nanjing University,Nanjing,China
2.Department of Mathematics,Harbin Institute of Technology,Harbin,China
3.Department of Mathematics,Southern University of Science and Technology,Shenzhen,China
4.Department of Mathematics,The University of Hong Kong,Hong Kong
推荐引用方式
GB/T 7714
He,Bingsheng,Xu,Shengjie,Yuan,Xiaoming. Extensions of ADMM for separable convex optimization problems with linear equality or inequality constraints,2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He,Bingsheng]的文章
[Xu,Shengjie]的文章
[Yuan,Xiaoming]的文章
百度学术
百度学术中相似的文章
[He,Bingsheng]的文章
[Xu,Shengjie]的文章
[Yuan,Xiaoming]的文章
必应学术
必应学术中相似的文章
[He,Bingsheng]的文章
[Xu,Shengjie]的文章
[Yuan,Xiaoming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。