中文版 | English
题名

Domain-Adaptive 3D Medical Image Synthesis: An Efficient Unsupervised Approach

作者
通讯作者Zhang,Jianguo
共同第一作者Li,Hongwei; Zhang,Jianguo
DOI
发表日期
2022
会议名称
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-16445-3
会议录名称
卷号
13436 LNCS
页码
495-504
会议日期
SEP 18-22, 2022
会议地点
Singapore,SINGAPORE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要

Medical image synthesis has attracted increasing attention because it could generate missing image data, improve diagnosis, and benefits many downstream tasks. However, so far the developed synthesis model is not adaptive to unseen data distribution that presents domain shift, limiting its applicability in clinical routine. This work focuses on exploring domain adaptation (DA) of 3D image-to-image synthesis models. First, we highlight the technical difference in DA between classification, segmentation, and synthesis models. Second, we present a novel efficient adaptation approach based on a 2D variational autoencoder which approximates 3D distributions. Third, we present empirical studies on the effect of the amount of adaptation data and the key hyper-parameters. Our results show that the proposed approach can significantly improve the synthesis accuracy on unseen domains in a 3D setting. The code is publicly available at https://github.com/WinstonHuTiger/2D_VAE_UDA_for_3D_sythesis.

学校署名
第一 ; 共同第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Key Research and Development Program of China[2021YFF1200800] ; Shenzhen Science, Technology and Innovation Commission BasicResearch Project[JCYJ20180507181527806] ; Forschungskredit from UZH[FK-21-125]
WOS研究方向
Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000867434800047
Scopus记录号
2-s2.0-85139130823
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406261
专题工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous System,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Department of Computer Science,Technical University of Munich,Munich,Germany
3.Department of Quantitative Biomedicine,University of Zurich,Zürich,Switzerland
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Hu,Qingqiao,Li,Hongwei,Zhang,Jianguo. Domain-Adaptive 3D Medical Image Synthesis: An Efficient Unsupervised Approach[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:495-504.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2207.00844.pdf(2547KB)会议论文--限制开放CC BY-NC-SA
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hu,Qingqiao]的文章
[Li,Hongwei]的文章
[Zhang,Jianguo]的文章
百度学术
百度学术中相似的文章
[Hu,Qingqiao]的文章
[Li,Hongwei]的文章
[Zhang,Jianguo]的文章
必应学术
必应学术中相似的文章
[Hu,Qingqiao]的文章
[Li,Hongwei]的文章
[Zhang,Jianguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。