题名 | Domain-Adaptive 3D Medical Image Synthesis: An Efficient Unsupervised Approach |
作者 | |
通讯作者 | Zhang,Jianguo |
共同第一作者 | Li,Hongwei; Zhang,Jianguo |
DOI | |
发表日期 | 2022
|
会议名称 | 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-16445-3
|
会议录名称 | |
卷号 | 13436 LNCS
|
页码 | 495-504
|
会议日期 | SEP 18-22, 2022
|
会议地点 | Singapore,SINGAPORE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Medical image synthesis has attracted increasing attention because it could generate missing image data, improve diagnosis, and benefits many downstream tasks. However, so far the developed synthesis model is not adaptive to unseen data distribution that presents domain shift, limiting its applicability in clinical routine. This work focuses on exploring domain adaptation (DA) of 3D image-to-image synthesis models. First, we highlight the technical difference in DA between classification, segmentation, and synthesis models. Second, we present a novel efficient adaptation approach based on a 2D variational autoencoder which approximates 3D distributions. Third, we present empirical studies on the effect of the amount of adaptation data and the key hyper-parameters. Our results show that the proposed approach can significantly improve the synthesis accuracy on unseen domains in a 3D setting. The code is publicly available at https://github.com/WinstonHuTiger/2D_VAE_UDA_for_3D_sythesis. |
学校署名 | 第一
; 共同第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key Research and Development Program of China[2021YFF1200800]
; Shenzhen Science, Technology and Innovation Commission BasicResearch Project[JCYJ20180507181527806]
; Forschungskredit from UZH[FK-21-125]
|
WOS研究方向 | Imaging Science & Photographic Technology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Imaging Science & Photographic Technology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000867434800047
|
Scopus记录号 | 2-s2.0-85139130823
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406261 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous System,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.Department of Computer Science,Technical University of Munich,Munich,Germany 3.Department of Quantitative Biomedicine,University of Zurich,Zürich,Switzerland |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Hu,Qingqiao,Li,Hongwei,Zhang,Jianguo. Domain-Adaptive 3D Medical Image Synthesis: An Efficient Unsupervised Approach[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:495-504.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2207.00844.pdf(2547KB) | 会议论文 | -- | 限制开放 | CC BY-NC-SA |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论