中文版 | English
题名

Task-Relevant Feature Replenishment for Cross-Centre Polyp Segmentation

作者
DOI
发表日期
2022
会议名称
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-16439-2
会议录名称
卷号
13434 LNCS
页码
599-608
会议日期
SEP 18-22, 2022
会议地点
null,Singapore,SINGAPORE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Colonoscopy images from different centres usually exhibit appearance variations, making the models trained on one domain unable to generalize well to another. To tackle this issue, we propose a novel Task-relevant Feature Replenishment based Network (TRFR-Net) for cross-centre polyp segmentation via retrieving task-relevant knowledge for sufficient discrimination capability with style variations alleviated. Specifically, we first design a domain-invariant feature decomposition (DIFD) module placed after each encoding block to extract domain-shared information for segmentation. Then we develop a task-relevant feature replenishment (TRFR) module to distill informative context from the residual features of each DIFD module and dynamically aggregate these task-relevant parts, providing extra information for generalized segmentation learning. To further bridge the domain gap leveraging structural similarity, we devise a Polyp-aware Adversarial Learning (PPAL) module to align prediction feature distribution, where more emphasis is imposed on the polyp-related alignment. Experimental results on three public datasets demonstrate the effectiveness of our proposed algorithm. The code is available at: https://github.com/CathyS1996/TRFRNet.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Key R&D Program of China[2019YFB1312400] ; Hong Kong RGC CRF[C4063-18G] ; Hong Kong RGC GRF[14211420]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Interdisciplinary Applications ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000867306400057
Scopus记录号
2-s2.0-85139076762
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406268
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering,The Chinese University of Hong Kong,Sha Tin,Hong Kong
2.Department of Radiation Oncology,Stanford University,Stanford,United States
3.Department of Electronic and Electrical Engineering,The Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Shen,Yutian,Lu,Ye,Jia,Xiao,et al. Task-Relevant Feature Replenishment for Cross-Centre Polyp Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:599-608.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shen,Yutian]的文章
[Lu,Ye]的文章
[Jia,Xiao]的文章
百度学术
百度学术中相似的文章
[Shen,Yutian]的文章
[Lu,Ye]的文章
[Jia,Xiao]的文章
必应学术
必应学术中相似的文章
[Shen,Yutian]的文章
[Lu,Ye]的文章
[Jia,Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。