题名 | Task-Relevant Feature Replenishment for Cross-Centre Polyp Segmentation |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-16439-2
|
会议录名称 | |
卷号 | 13434 LNCS
|
页码 | 599-608
|
会议日期 | SEP 18-22, 2022
|
会议地点 | null,Singapore,SINGAPORE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Colonoscopy images from different centres usually exhibit appearance variations, making the models trained on one domain unable to generalize well to another. To tackle this issue, we propose a novel Task-relevant Feature Replenishment based Network (TRFR-Net) for cross-centre polyp segmentation via retrieving task-relevant knowledge for sufficient discrimination capability with style variations alleviated. Specifically, we first design a domain-invariant feature decomposition (DIFD) module placed after each encoding block to extract domain-shared information for segmentation. Then we develop a task-relevant feature replenishment (TRFR) module to distill informative context from the residual features of each DIFD module and dynamically aggregate these task-relevant parts, providing extra information for generalized segmentation learning. To further bridge the domain gap leveraging structural similarity, we devise a Polyp-aware Adversarial Learning (PPAL) module to align prediction feature distribution, where more emphasis is imposed on the polyp-related alignment. Experimental results on three public datasets demonstrate the effectiveness of our proposed algorithm. The code is available at: https://github.com/CathyS1996/TRFRNet. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key R&D Program of China[2019YFB1312400]
; Hong Kong RGC CRF[C4063-18G]
; Hong Kong RGC GRF[14211420]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000867306400057
|
Scopus记录号 | 2-s2.0-85139076762
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406268 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electronic Engineering,The Chinese University of Hong Kong,Sha Tin,Hong Kong 2.Department of Radiation Oncology,Stanford University,Stanford,United States 3.Department of Electronic and Electrical Engineering,The Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Shen,Yutian,Lu,Ye,Jia,Xiao,et al. Task-Relevant Feature Replenishment for Cross-Centre Polyp Segmentation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:599-608.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论