题名 | Degradation-Invariant Enhancement of Fundus Images via Pyramid Constraint Network |
作者 | |
通讯作者 | Li,Heng |
DOI | |
发表日期 | 2022
|
会议名称 | 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-16433-0
|
会议录名称 | |
卷号 | 13432 LNCS
|
页码 | 507-516
|
会议日期 | SEP 18-22, 2022
|
会议地点 | null,Singapore,SINGAPORE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | As an economical and efficient fundus imaging modality, retinal fundus images have been widely adopted in clinical fundus examination. Unfortunately, fundus images often suffer from quality degradation caused by imaging interferences, leading to misdiagnosis. Despite impressive enhancement performances that state-of-the-art methods have achieved, challenges remain in clinical scenarios. For boosting the clinical deployment of fundus image enhancement, this paper proposes the pyramid constraint to develop a degradation-invariant enhancement network (PCE-Net), which mitigates the demand for clinical data and stably enhances unknown data. Firstly, high-quality images are randomly degraded to form sequences of low-quality ones sharing the same content (SeqLCs). Then individual low-quality images are decomposed to Laplacian pyramid features (LPF) as the multi-level input for the enhancement. Subsequently, a feature pyramid constraint (FPC) for the sequence is introduced to enforce the PCE-Net to learn a degradation-invariant model. Extensive experiments have been conducted under the evaluation metrics of enhancement and segmentation. The effectiveness of the PCE-Net was demonstrated in comparison with state-of-the-art methods and the ablation study. The source code of this study is publicly available at https://github.com/HeverLaw/PCENet-Image-Enhancement. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Basic and Applied Fundamental Research Foundation of Guangdong Province[2020A1515110286]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000867288800049
|
Scopus记录号 | 2-s2.0-85139075694
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:8
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406269 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen,China 2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 3.IHPC,A*STAR,Singapore,Singapore 4.The School of Computer and Communication Engineering,University of Science and Technology Beijing,Beijing,China 5.Singapore Eye Research Institute,Singapore National Eye Centre,Singapore,Singapore |
第一作者单位 | 南方科技大学; 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Liu,Haofeng,Li,Heng,Fu,Huazhu,et al. Degradation-Invariant Enhancement of Fundus Images via Pyramid Constraint Network[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:507-516.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论