中文版 | English
题名

Degradation-Invariant Enhancement of Fundus Images via Pyramid Constraint Network

作者
通讯作者Li,Heng
DOI
发表日期
2022
会议名称
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-16433-0
会议录名称
卷号
13432 LNCS
页码
507-516
会议日期
SEP 18-22, 2022
会议地点
null,Singapore,SINGAPORE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
As an economical and efficient fundus imaging modality, retinal fundus images have been widely adopted in clinical fundus examination. Unfortunately, fundus images often suffer from quality degradation caused by imaging interferences, leading to misdiagnosis. Despite impressive enhancement performances that state-of-the-art methods have achieved, challenges remain in clinical scenarios. For boosting the clinical deployment of fundus image enhancement, this paper proposes the pyramid constraint to develop a degradation-invariant enhancement network (PCE-Net), which mitigates the demand for clinical data and stably enhances unknown data. Firstly, high-quality images are randomly degraded to form sequences of low-quality ones sharing the same content (SeqLCs). Then individual low-quality images are decomposed to Laplacian pyramid features (LPF) as the multi-level input for the enhancement. Subsequently, a feature pyramid constraint (FPC) for the sequence is introduced to enforce the PCE-Net to learn a degradation-invariant model. Extensive experiments have been conducted under the evaluation metrics of enhancement and segmentation. The effectiveness of the PCE-Net was demonstrated in comparison with state-of-the-art methods and the ablation study. The source code of this study is publicly available at https://github.com/HeverLaw/PCENet-Image-Enhancement.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Basic and Applied Fundamental Research Foundation of Guangdong Province[2020A1515110286]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000867288800049
Scopus记录号
2-s2.0-85139075694
来源库
Scopus
引用统计
被引频次[WOS]:8
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406269
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.IHPC,A*STAR,Singapore,Singapore
4.The School of Computer and Communication Engineering,University of Science and Technology Beijing,Beijing,China
5.Singapore Eye Research Institute,Singapore National Eye Centre,Singapore,Singapore
第一作者单位南方科技大学;  计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Liu,Haofeng,Li,Heng,Fu,Huazhu,et al. Degradation-Invariant Enhancement of Fundus Images via Pyramid Constraint Network[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:507-516.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Haofeng]的文章
[Li,Heng]的文章
[Fu,Huazhu]的文章
百度学术
百度学术中相似的文章
[Liu,Haofeng]的文章
[Li,Heng]的文章
[Fu,Huazhu]的文章
必应学术
必应学术中相似的文章
[Liu,Haofeng]的文章
[Li,Heng]的文章
[Fu,Huazhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。