中文版 | English
题名

Interaction-Oriented Feature Decomposition for Medical Image Lesion Detection

作者
通讯作者Hu,Yan
DOI
发表日期
2022
会议名称
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-16436-1
会议录名称
卷号
13433 LNCS
页码
324-333
会议日期
SEP 18-22, 2022
会议地点
null,Singapore,SINGAPORE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Common lesion detection networks typically use lesion features for classification and localization. However, many lesions are classified only by lesion features without considering the relation with global context features, which raises the misclassification problem. In this paper, we propose an Interaction-Oriented Feature Decomposition (IOFD) network to improve the detection performance on context-dependent lesions. Specifically, we decompose features output from a backbone into global context features and lesion features that are optimized independently. Then, we design two novel modules to improve the lesion classification accuracy. A Global Context Embedding (GCE) module is designed to extract global context features. A Global Context Cross Attention (GCCA) module without additional parameters is designed to model the interaction between global context features and lesion features. Besides, considering the different features required by classification and localization tasks, we further adopt a task decoupling strategy. IOFD is easy to train and end-to-end in terms of training and inference. The experimental results for datasets in two modalities outperform state-of-the-art algorithms, which demonstrates the effectiveness and generality of IOFD. The source code is available at https://github.com/mklz-sjy/IOFD
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[8210072776]
WOS研究方向
Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000867397400031
Scopus记录号
2-s2.0-85139061318
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406271
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Intelligent Healthcare Unit,Baidu,Beijing,100000,China
3.Department of Ophthalmology,Shenzhen People’s Hospital,Shenzhen,Guangdong,518020,China
4.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Shen,Junyong,Hu,Yan,Zhang,Xiaoqing,et al. Interaction-Oriented Feature Decomposition for Medical Image Lesion Detection[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:324-333.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shen,Junyong]的文章
[Hu,Yan]的文章
[Zhang,Xiaoqing]的文章
百度学术
百度学术中相似的文章
[Shen,Junyong]的文章
[Hu,Yan]的文章
[Zhang,Xiaoqing]的文章
必应学术
必应学术中相似的文章
[Shen,Junyong]的文章
[Hu,Yan]的文章
[Zhang,Xiaoqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。