题名 | Interaction-Oriented Feature Decomposition for Medical Image Lesion Detection |
作者 | |
通讯作者 | Hu,Yan |
DOI | |
发表日期 | 2022
|
会议名称 | 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-16436-1
|
会议录名称 | |
卷号 | 13433 LNCS
|
页码 | 324-333
|
会议日期 | SEP 18-22, 2022
|
会议地点 | null,Singapore,SINGAPORE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Common lesion detection networks typically use lesion features for classification and localization. However, many lesions are classified only by lesion features without considering the relation with global context features, which raises the misclassification problem. In this paper, we propose an Interaction-Oriented Feature Decomposition (IOFD) network to improve the detection performance on context-dependent lesions. Specifically, we decompose features output from a backbone into global context features and lesion features that are optimized independently. Then, we design two novel modules to improve the lesion classification accuracy. A Global Context Embedding (GCE) module is designed to extract global context features. A Global Context Cross Attention (GCCA) module without additional parameters is designed to model the interaction between global context features and lesion features. Besides, considering the different features required by classification and localization tasks, we further adopt a task decoupling strategy. IOFD is easy to train and end-to-end in terms of training and inference. The experimental results for datasets in two modalities outperform state-of-the-art algorithms, which demonstrates the effectiveness and generality of IOFD. The source code is available at https://github.com/mklz-sjy/IOFD |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[8210072776]
|
WOS研究方向 | Neurosciences & Neurology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Neuroimaging
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000867397400031
|
Scopus记录号 | 2-s2.0-85139061318
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406271 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Intelligent Healthcare Unit,Baidu,Beijing,100000,China 3.Department of Ophthalmology,Shenzhen People’s Hospital,Shenzhen,Guangdong,518020,China 4.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Shen,Junyong,Hu,Yan,Zhang,Xiaoqing,et al. Interaction-Oriented Feature Decomposition for Medical Image Lesion Detection[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:324-333.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论