中文版 | English
题名

Weighted Concordance Index Loss-Based Multimodal Survival Modeling for Radiation Encephalopathy Assessment in Nasopharyngeal Carcinoma Radiotherapy

作者
通讯作者Liu,Jiang
DOI
发表日期
2022
会议名称
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-16448-4
会议录名称
卷号
13437 LNCS
页码
191-201
会议日期
SEP 18-22, 2022
会议地点
null,Singapore,SINGAPORE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Radiation encephalopathy (REP) is the most common complication for nasopharyngeal carcinoma (NPC) radiotherapy. It is highly desirable to assist clinicians in optimizing the NPC radiotherapy regimen to reduce radiotherapy-induced temporal lobe injury (RTLI) according to the probability of REP onset. To the best of our knowledge, it is the first exploration of predicting radiotherapy-induced REP by jointly exploiting image and non-image data in NPC radiotherapy regimen. We cast REP prediction as a survival analysis task and evaluate the predictive accuracy in terms of the concordance index (CI). We design a deep multimodal survival network (MSN) with two feature extractors to learn discriminative features from multimodal data. One feature extractor imposes feature selection on non-image data, and the other learns visual features from images. Because the priorly balanced CI (BCI) loss function directly maximizing the CI is sensitive to uneven sampling per batch. Hence, we propose a novel weighted CI (WCI) loss function to leverage all REP samples effectively by assigning their different weights with a dual average operation. We further introduce a temperature hyper-parameter for our WCI to sharpen the risk difference of sample pairs to help model convergence. We extensively evaluate our WCI on a private dataset to demonstrate its favourability against its counterparts. The experimental results also show multimodal data of NPC radiotherapy can bring more gains for REP risk prediction.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Interdisciplinary Applications ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000867568000019
Scopus记录号
2-s2.0-85139050555
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406274
专题工学院_斯发基斯可信自主研究院
作者单位
1.School of Computer Science and Technology,Harbin Institute of Technology,Harbin,China
2.CVTE Research,Guangzhou,China
3.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China
4.Department of Radiation Oncology,Sun Yat-sen University Cancer Center,Guangzhou,China
第一作者单位斯发基斯可信自主系统研究院
通讯作者单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Fang,Jiansheng,Li,Anwei,OuYang,Pu Yun,et al. Weighted Concordance Index Loss-Based Multimodal Survival Modeling for Radiation Encephalopathy Assessment in Nasopharyngeal Carcinoma Radiotherapy[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:191-201.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fang,Jiansheng]的文章
[Li,Anwei]的文章
[OuYang,Pu Yun]的文章
百度学术
百度学术中相似的文章
[Fang,Jiansheng]的文章
[Li,Anwei]的文章
[OuYang,Pu Yun]的文章
必应学术
必应学术中相似的文章
[Fang,Jiansheng]的文章
[Li,Anwei]的文章
[OuYang,Pu Yun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。