题名 | Weighted Concordance Index Loss-Based Multimodal Survival Modeling for Radiation Encephalopathy Assessment in Nasopharyngeal Carcinoma Radiotherapy |
作者 | |
通讯作者 | Liu,Jiang |
DOI | |
发表日期 | 2022
|
会议名称 | 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-16448-4
|
会议录名称 | |
卷号 | 13437 LNCS
|
页码 | 191-201
|
会议日期 | SEP 18-22, 2022
|
会议地点 | null,Singapore,SINGAPORE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Radiation encephalopathy (REP) is the most common complication for nasopharyngeal carcinoma (NPC) radiotherapy. It is highly desirable to assist clinicians in optimizing the NPC radiotherapy regimen to reduce radiotherapy-induced temporal lobe injury (RTLI) according to the probability of REP onset. To the best of our knowledge, it is the first exploration of predicting radiotherapy-induced REP by jointly exploiting image and non-image data in NPC radiotherapy regimen. We cast REP prediction as a survival analysis task and evaluate the predictive accuracy in terms of the concordance index (CI). We design a deep multimodal survival network (MSN) with two feature extractors to learn discriminative features from multimodal data. One feature extractor imposes feature selection on non-image data, and the other learns visual features from images. Because the priorly balanced CI (BCI) loss function directly maximizing the CI is sensitive to uneven sampling per batch. Hence, we propose a novel weighted CI (WCI) loss function to leverage all REP samples effectively by assigning their different weights with a dual average operation. We further introduce a temperature hyper-parameter for our WCI to sharpen the risk difference of sample pairs to help model convergence. We extensively evaluate our WCI on a private dataset to demonstrate its favourability against its counterparts. The experimental results also show multimodal data of NPC radiotherapy can bring more gains for REP risk prediction. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Imaging Science & Photographic Technology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000867568000019
|
Scopus记录号 | 2-s2.0-85139050555
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406274 |
专题 | 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.School of Computer Science and Technology,Harbin Institute of Technology,Harbin,China 2.CVTE Research,Guangzhou,China 3.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China 4.Department of Radiation Oncology,Sun Yat-sen University Cancer Center,Guangzhou,China |
第一作者单位 | 斯发基斯可信自主系统研究院 |
通讯作者单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Fang,Jiansheng,Li,Anwei,OuYang,Pu Yun,et al. Weighted Concordance Index Loss-Based Multimodal Survival Modeling for Radiation Encephalopathy Assessment in Nasopharyngeal Carcinoma Radiotherapy[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:191-201.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论