中文版 | English
题名

Uni4Eye: Unified 2D and 3D Self-supervised Pre-training via Masked Image Modeling Transformer for Ophthalmic Image Classification

作者
通讯作者Tang,Xiaoying
DOI
发表日期
2022
会议名称
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-16451-4
会议录名称
页码
88-98
会议日期
SEP 18-22, 2022
会议地点
null,Singapore,SINGAPORE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要

A large-scale labeled dataset is a key factor for the success of supervised deep learning in computer vision. However, a limited number of annotated data is very common, especially in ophthalmic image analysis, since manual annotation is time-consuming and labor-intensive. Self-supervised learning (SSL) methods bring huge opportunities for better utilizing unlabeled data, as they do not need massive annotations. With an attempt to use as many as possible unlabeled ophthalmic images, it is necessary to break the dimension barrier, simultaneously making use of both 2D and 3D images. In this paper, we propose a universal self-supervised Transformer framework, named Uni4Eye, to discover the inherent image property and capture domain-specific feature embedding in ophthalmic images. Uni4Eye can serve as a global feature extractor, which builds its basis on a Masked Image Modeling task with a Vision Transformer (ViT) architecture. We employ a Unified Patch Embedding module to replace the origin patch embedding module in ViT for jointly processing both 2D and 3D input images. Besides, we design a dual-branch multitask decoder module to simultaneously perform two reconstruction tasks on the input image and its gradient map, delivering discriminative representations for better convergence. We evaluate the performance of our pre-trained Uni4Eye encoder by fine-tuning it on six downstream ophthalmic image classification tasks. The superiority of Uni4Eye is successfully established through comparisons to other state-of-the-art SSL pre-training methods.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Shenzhen Basic Research Program[JCYJ20200925153847004]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000867418200009
Scopus记录号
2-s2.0-85139010610
来源库
Scopus
引用统计
被引频次[WOS]:18
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406279
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,China
2.Department of Electrical and Electronic Engineering,The University of Hong Kong,Pok Fu Lam,Hong Kong
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Cai,Zhiyuan,Lin,Li,He,Huaqing,et al. Uni4Eye: Unified 2D and 3D Self-supervised Pre-training via Masked Image Modeling Transformer for Ophthalmic Image Classification[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:88-98.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cai,Zhiyuan]的文章
[Lin,Li]的文章
[He,Huaqing]的文章
百度学术
百度学术中相似的文章
[Cai,Zhiyuan]的文章
[Lin,Li]的文章
[He,Huaqing]的文章
必应学术
必应学术中相似的文章
[Cai,Zhiyuan]的文章
[Lin,Li]的文章
[He,Huaqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。