题名 | Screening of Dementia on OCTA Images via Multi-projection Consistency and Complementarity |
作者 | |
通讯作者 | Miao,Hanpei |
DOI | |
发表日期 | 2022
|
会议名称 | 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-16433-0
|
会议录名称 | |
卷号 | 13432 LNCS
|
页码 | 688-698
|
会议日期 | SEP 18-22, 2022
|
会议地点 | null,Singapore,SINGAPORE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | It has been suggested that the retinal vasculature alternations are associated with dementia in recent clinical studies, and the eye examination may facilitate the early screening of dementia. Optical Coherence Tomography Angiography (OCTA) has shown its superiority in visualizing superficial vascular complex (SVC), deep vascular complex (DVC), and choriocapillaris, and it has been extensively used in clinical practice. However, the information in OCTA is far from fully mined by existing methods, which straightforwardly analyze the multiple projections of OCTA by average or concatenation. These methods do not take into account the relationship between multiple projections. Accordingly, a Multi-projection Consistency and complementarity Learning Network (MUCO-Net) is proposed in this paper to explore the diagnosis of dementia based on OCTA. Firstly, a consistency and complementarity attention (CsCp) module is developed to understand the complex relationships among various projections. Then, a cross-view fusion (CVF) module is introduced to combine the multi-scale features from the CsCp. In addition, the number of input flows of the proposed modules is flexible to boost the interactions across the features from different projections. In the experiment, MUCO-Net is implemented on two OCTA datasets to screen for dementia and diagnose fundus diseases. The effectiveness of MUCO-Net is demonstrated by its superior performance to state-of-the-art methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | China Postdoctoral Science Foundation[2021M691437]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000867288800066
|
Scopus记录号 | 2-s2.0-85139010248
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406280 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.Agency for Science,Technology and Research (A*STAR),Singapore,Singapore 4.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Beijing,China 5.West China Hospital Sichuan University,Chengdu,China 6.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Wang,Xingyue,Li,Heng,Xiao,Zunjie,et al. Screening of Dementia on OCTA Images via Multi-projection Consistency and Complementarity[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:688-698.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论