中文版 | English
题名

Structure-Consistent Restoration Network for Cataract Fundus Image Enhancement

作者
通讯作者Li,Heng
DOI
发表日期
2022
会议名称
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-16433-0
会议录名称
卷号
13432 LNCS
页码
487-496
会议日期
SEP 18-22, 2022
会议地点
null,Singapore,SINGAPORE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Fundus photography is a routine examination in clinics to diagnose and monitor ocular diseases. However, for cataract patients, the fundus image always suffers quality degradation caused by the clouding lens. The degradation prevents reliable diagnosis by ophthalmologists or computer-aided systems. To improve the certainty in clinical diagnosis, restoration algorithms have been proposed to enhance the quality of fundus images. Unfortunately, challenges remain in the deployment of these algorithms, such as collecting sufficient training data and preserving retinal structures. In this paper, to circumvent the strict deployment requirement, a structure-consistent restoration network (SCR-Net) for cataract fundus images is developed from synthesized data that shares an identical structure. A cataract simulation model is firstly designed to collect synthesized cataract sets (SCS) formed by cataract fundus images sharing identical structures. Then high-frequency components (HFCs) are extracted from the SCS to constrain structure consistency such that the structure preservation in SCR-Net is enforced. The experiments demonstrate the effectiveness of SCR-Net in the comparison with state-of-the-art methods and the follow-up clinical applications. The code is available at https://github.com/liamheng/Annotation-free-Fundus-Image-Enhancement.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Basic and Applied Fundamental Research Foundation of Guangdong Province[2020A1515110286]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000867288800047
Scopus记录号
2-s2.0-85138999261
来源库
Scopus
引用统计
被引频次[WOS]:14
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406282
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.IHPC,A*STAR,Singapore,Singapore
3.Department of Biostatistics,School of Global Public Health,New York University,New York,United States
4.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Beijing,China
5.Shenzhen People’s Hospital,Shenzhen,China
6.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen,China
7.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Li,Heng,Liu,Haofeng,Fu,Huazhu,et al. Structure-Consistent Restoration Network for Cataract Fundus Image Enhancement[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:487-496.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Heng]的文章
[Liu,Haofeng]的文章
[Fu,Huazhu]的文章
百度学术
百度学术中相似的文章
[Li,Heng]的文章
[Liu,Haofeng]的文章
[Fu,Huazhu]的文章
必应学术
必应学术中相似的文章
[Li,Heng]的文章
[Liu,Haofeng]的文章
[Fu,Huazhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。