题名 | Structure-Consistent Restoration Network for Cataract Fundus Image Enhancement |
作者 | |
通讯作者 | Li,Heng |
DOI | |
发表日期 | 2022
|
会议名称 | 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-16433-0
|
会议录名称 | |
卷号 | 13432 LNCS
|
页码 | 487-496
|
会议日期 | SEP 18-22, 2022
|
会议地点 | null,Singapore,SINGAPORE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Fundus photography is a routine examination in clinics to diagnose and monitor ocular diseases. However, for cataract patients, the fundus image always suffers quality degradation caused by the clouding lens. The degradation prevents reliable diagnosis by ophthalmologists or computer-aided systems. To improve the certainty in clinical diagnosis, restoration algorithms have been proposed to enhance the quality of fundus images. Unfortunately, challenges remain in the deployment of these algorithms, such as collecting sufficient training data and preserving retinal structures. In this paper, to circumvent the strict deployment requirement, a structure-consistent restoration network (SCR-Net) for cataract fundus images is developed from synthesized data that shares an identical structure. A cataract simulation model is firstly designed to collect synthesized cataract sets (SCS) formed by cataract fundus images sharing identical structures. Then high-frequency components (HFCs) are extracted from the SCS to constrain structure consistency such that the structure preservation in SCR-Net is enforced. The experiments demonstrate the effectiveness of SCR-Net in the comparison with state-of-the-art methods and the follow-up clinical applications. The code is available at https://github.com/liamheng/Annotation-free-Fundus-Image-Enhancement. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Basic and Applied Fundamental Research Foundation of Guangdong Province[2020A1515110286]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000867288800047
|
Scopus记录号 | 2-s2.0-85138999261
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:14
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406282 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.IHPC,A*STAR,Singapore,Singapore 3.Department of Biostatistics,School of Global Public Health,New York University,New York,United States 4.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Beijing,China 5.Shenzhen People’s Hospital,Shenzhen,China 6.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Southern University of Science and Technology,Shenzhen,China 7.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Li,Heng,Liu,Haofeng,Fu,Huazhu,et al. Structure-Consistent Restoration Network for Cataract Fundus Image Enhancement[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:487-496.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论