中文版 | English
题名

Network Embedding and Its Applications

其他题名
网络嵌入及其应用
姓名
学号
11756007
学位类型
博士
学位专业
计算机应用技术
学科门类/专业学位类别
计算机科学与技术
导师
唐珂
论文答辩日期
2021-11-04
论文提交日期
2022-06-30
学位授予单位
伯明翰大学
学位授予地点
英国
摘要

Apart from the attached attributes of entities, the relationships among entities are also an important perspective that reveals the topological structure of entities in a complex system. A network (or graph) with nodes representing entities and links indicating relationships, has been widely used in sociology, biology, chemistry, medicine, the Internet, etc. However, traditional machine learning and data mining algorithms, designed for the entities with attributes (i.e., data points in a vector space), cannot effectively and/or efficiently utilize the topological information of a network formed by relationships among entities. To fill this gap, Network Embedding (NE) is proposed to embed a network into a low dimensional vector space while preserving some topologies and/or properties, so that the resulting embeddings can facilitate various downstream machine learning and data mining tasks. Although there have been many successful NE methods, most of them are designed for embedding static plain networks. In fact, real-world networks often come with one or more additional properties such as node attributes and dynamic changes. The central research question of this thesis is ``where and how can we apply NE for more realistic scenarios?''. To this end, we propose three novel NE methods, each of which is for addressing the new challenges resulting from one type of more realistic networks. Besides, we also discuss the applications of NE with the focus to the drug-target interaction prediction problem.

关键词
语种
英语
培养类别
联合培养
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406321
专题工学院_计算机科学与工程系
推荐引用方式
GB/T 7714
Hou CB. Network Embedding and Its Applications[D]. 英国. 伯明翰大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Network Embedding an(7849KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[侯诚彬]的文章
百度学术
百度学术中相似的文章
[侯诚彬]的文章
必应学术
必应学术中相似的文章
[侯诚彬]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。