中文版 | English
题名

Face2Exp: Combating Data Biases for Facial Expression Recognition

作者
DOI
发表日期
2022
会议名称
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISSN
1063-6919
ISBN
978-1-6654-6947-0
会议录名称
卷号
2022-June
页码
20259-20268
会议日期
18-24 June 2022
会议地点
New Orleans, LA, USA
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要

Facial expression recognition (FER) is challenging due to the class imbalance caused by data collection. Existing studies tackle the data bias problem using only labeled facial expression dataset. Orthogonal to existing FER methods, we propose to utilize large unlabeled face recognition (FR) datasets to enhance FER. However, this raises another data bias problem—the distribution mismatch between FR and FER data. To combat the mismatch, we propose the Meta-Face2Exp framework, which consists of a base network and an adaptation network. The base network learns prior expression knowledge on class-balanced FER data while the adaptation network is trained to fit the pseudo labels of FR data generated by the base model. To combat the mismatch between FR and FER data, Meta-Face2Exp uses a circuit feedback mechanism, which improves the base network with the feedback from the adaptation network. Experiments show that our MetaFace2Exp achieves comparable accuracy to state-of-the-art FER methods with 10% of the labeled FER data utilized by the baselines. We also demonstrate that the circuit feedback mechanism successfully eliminates data bias.
 

关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Guangdong Provincial Key Laboratory[2020B121201001] ; National Natural Science Foundation of China["62176170","62066042"]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号
WOS:000870783006010
EI入藏号
20224613119721
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9879702
引用统计
被引频次[WOS]:63
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406461
专题工学院_计算机科学与工程系
工学院_深港微电子学院
工学院_斯发基斯可信自主研究院
作者单位
1.Research Institue of Trustworthy Autonomous Systems, Southern University of Science and Technology & Department of Computer Science and Engineering, Southern University of Science and Technology
2.JD.com, Beijing, China
3.School of Microelectronics, Southern University of Science and Technology
4.Research Institue of Trustworthy Autonomous Systems, Southern University of Science and Technology & Department of Computer Science and Engineering, Southern University of Science and Technology
5.JD.com, Beijing, China
6.School of Microelectronics, Southern University of Science and Technology
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Dan Zeng,Zhiyuan Lin,Xiao Yan,et al. Face2Exp: Combating Data Biases for Facial Expression Recognition[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022:20259-20268.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dan Zeng]的文章
[Zhiyuan Lin]的文章
[Xiao Yan]的文章
百度学术
百度学术中相似的文章
[Dan Zeng]的文章
[Zhiyuan Lin]的文章
[Xiao Yan]的文章
必应学术
必应学术中相似的文章
[Dan Zeng]的文章
[Zhiyuan Lin]的文章
[Xiao Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。