题名 | Face2Exp: Combating Data Biases for Facial Expression Recognition |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
|
ISSN | 1063-6919
|
ISBN | 978-1-6654-6947-0
|
会议录名称 | |
卷号 | 2022-June
|
页码 | 20259-20268
|
会议日期 | 18-24 June 2022
|
会议地点 | New Orleans, LA, USA
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | Facial expression recognition (FER) is challenging due to the class imbalance caused by data collection. Existing studies tackle the data bias problem using only labeled facial expression dataset. Orthogonal to existing FER methods, we propose to utilize large unlabeled face recognition (FR) datasets to enhance FER. However, this raises another data bias problem—the distribution mismatch between FR and FER data. To combat the mismatch, we propose the Meta-Face2Exp framework, which consists of a base network and an adaptation network. The base network learns prior expression knowledge on class-balanced FER data while the adaptation network is trained to fit the pseudo labels of FR data generated by the base model. To combat the mismatch between FR and FER data, Meta-Face2Exp uses a circuit feedback mechanism, which improves the base network with the feedback from the adaptation network. Experiments show that our MetaFace2Exp achieves comparable accuracy to state-of-the-art FER methods with 10% of the labeled FER data utilized by the baselines. We also demonstrate that the circuit feedback mechanism successfully eliminates data bias. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Guangdong Provincial Key Laboratory[2020B121201001]
; National Natural Science Foundation of China["62176170","62066042"]
|
WOS研究方向 | Computer Science
; Imaging Science & Photographic Technology
|
WOS类目 | Computer Science, Artificial Intelligence
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000870783006010
|
EI入藏号 | 20224613119721
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9879702 |
引用统计 |
被引频次[WOS]:63
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406461 |
专题 | 工学院_计算机科学与工程系 工学院_深港微电子学院 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Research Institue of Trustworthy Autonomous Systems, Southern University of Science and Technology & Department of Computer Science and Engineering, Southern University of Science and Technology 2.JD.com, Beijing, China 3.School of Microelectronics, Southern University of Science and Technology 4.Research Institue of Trustworthy Autonomous Systems, Southern University of Science and Technology & Department of Computer Science and Engineering, Southern University of Science and Technology 5.JD.com, Beijing, China 6.School of Microelectronics, Southern University of Science and Technology |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Dan Zeng,Zhiyuan Lin,Xiao Yan,et al. Face2Exp: Combating Data Biases for Facial Expression Recognition[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022:20259-20268.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论