中文版 | English
题名

BERT-based Sentiment Analysis of Chinese Online Social Movements

作者
DOI
发表日期
2022
ISBN
978-1-6654-9808-1
会议录名称
页码
1-6
会议日期
1-3 Sept. 2022
会议地点
Bristol, United Kingdom
摘要
Online social movements are a group of netizens with the same or similar purpose, spontaneously discussing and disseminating certain information, trying to attract more people to participate, and creating a public opinion on the Internet or even a social atmosphere of anxiety. Online social movements analysis can reveal the evolution of sentiment during the movements and therefore prevent the relevant social disasters from happening. The literature shows the lack of public sentiment analysis text datasets and effective analysis methods for Chinese online social movements. In this paper, we classify sentiment into four categories: positive, anger, anxiety, and weak negative. We believe anger and anxiety are the two most important sentiments in forming an online social movement. Afterwards, we first time create a public sentiment analysis dataset about Chinese online social movements, and then propose a bidirectional encoder representation from transformers (BERT)-based model to classify the sentiment. Moreover, we use the focal loss in the BERT model rather than cross entropy loss to enhance the contribution of minority classes to the total loss to address the imbalance issue in the dataset. The proposed BERT-based model is compared with six baseline methods. The results show that our method outperforms those baseline models by achieving higher macroF1 scores.
关键词
学校署名
第一
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9911123
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406467
专题工学院_计算机科学与工程系
前沿与交叉科学研究院
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
3.Key Laboratory of Urban Safety Risk Monitoring and Early Warning, Ministry of Emergency Management, Shenzhen, China
4.Shenzhen Key Laboratory of Future Industrial Internet Safety and Security, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Hao Li,Yulong Ding,Jie Jiang,et al. BERT-based Sentiment Analysis of Chinese Online Social Movements[C],2022:1-6.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hao Li]的文章
[Yulong Ding]的文章
[Jie Jiang]的文章
百度学术
百度学术中相似的文章
[Hao Li]的文章
[Yulong Ding]的文章
[Jie Jiang]的文章
必应学术
必应学术中相似的文章
[Hao Li]的文章
[Yulong Ding]的文章
[Jie Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。