题名 | Lagrange Coded Federated Learning (L-CoFL) Model for Internet of Vehicles |
作者 | |
通讯作者 | Alia Asheralieva |
DOI | |
发表日期 | 2022
|
会议名称 | 42nd IEEE International Conference on Distributed Computing Systems (ICDCS)
|
ISSN | 1063-6927
|
ISBN | 978-1-6654-7178-7
|
会议录名称 | |
页码 | 864-872
|
会议日期 | 10-13 July 2022
|
会议地点 | Bologna, Italy
|
会议举办国 | 意大利
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | In Internet-of-Vehicles (IoV), smart vehicles can efficiently process various sensing data through federated learning (FL) - a privacy-preserving distributed machine learning (ML) approach that allows collaborative development of the shared ML model without any data exchange. However, traditional FL approaches suffer from poor security against the system noise, e.g., due to low-quality trained data, wireless channel errors, and malicious vehicles generating erroneous results, which affects the accuracy of the developed ML model. To address this problem, we propose a novel FL model based on the concept of Lagrange coded computing (LCC) - a coded distributed computing (CDC) scheme that enables enhancing the system security. In particular, we design the first L-CoFL (Lagrange coded FL) model to improve the accuracy of FL computations in the presence of low-quality trained data and wireless channel errors, and guarantee the system security against malicious vehicles. We apply the proposed L-CoFL model to predict the traffic slowness in IoV and verify the superior performance of our model through extensive simulations. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Characteristic Innovation Project of Guangdong Provincial Department of Education[2021KTSCX110]
; UKRI[
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Hardware & Architecture
; Computer Science, Software Engineering
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000877026100079
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9912244 |
引用统计 |
被引频次[WOS]:6
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406471 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 及University of Warwick, Coventry, UK 2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 3.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China 4.Department of Computer Science and Engineering & Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China 5.School of Automation, Guangdong University of Technology, Guangzhou, China 6.Pillar of Information Systems Technology and Design, Singapore University of Technology and Design, Singapore 7.University of Warwick, Coventry, UK |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Weiquan Ni,Shaoliang Zhu,Md Monjurul Karim,et al. Lagrange Coded Federated Learning (L-CoFL) Model for Internet of Vehicles[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022:864-872.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论