中文版 | English
题名

Lagrange Coded Federated Learning (L-CoFL) Model for Internet of Vehicles

作者
通讯作者Alia Asheralieva
DOI
发表日期
2022
会议名称
42nd IEEE International Conference on Distributed Computing Systems (ICDCS)
ISSN
1063-6927
ISBN
978-1-6654-7178-7
会议录名称
页码
864-872
会议日期
10-13 July 2022
会议地点
Bologna, Italy
会议举办国
意大利
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要

In Internet-of-Vehicles (IoV), smart vehicles can efficiently process various sensing data through federated learning (FL) - a privacy-preserving distributed machine learning (ML) approach that allows collaborative development of the shared ML model without any data exchange. However, traditional FL approaches suffer from poor security against the system noise, e.g., due to low-quality trained data, wireless channel errors, and malicious vehicles generating erroneous results, which affects the accuracy of the developed ML model. To address this problem, we propose a novel FL model based on the concept of Lagrange coded computing (LCC) - a coded distributed computing (CDC) scheme that enables enhancing the system security. In particular, we design the first L-CoFL (Lagrange coded FL) model to improve the accuracy of FL computations in the presence of low-quality trained data and wireless channel errors, and guarantee the system security against malicious vehicles. We apply the proposed L-CoFL model to predict the traffic slowness in IoV and verify the superior performance of our model through extensive simulations.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Characteristic Innovation Project of Guangdong Provincial Department of Education[2021KTSCX110] ; UKRI[
WOS研究方向
Computer Science
WOS类目
Computer Science, Hardware & Architecture ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:000877026100079
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9912244
引用统计
被引频次[WOS]:6
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406471
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 及University of Warwick, Coventry, UK
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
3.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
4.Department of Computer Science and Engineering & Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
5.School of Automation, Guangdong University of Technology, Guangzhou, China
6.Pillar of Information Systems Technology and Design, Singapore University of Technology and Design, Singapore
7.University of Warwick, Coventry, UK
第一作者单位计算机科学与工程系
通讯作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Weiquan Ni,Shaoliang Zhu,Md Monjurul Karim,et al. Lagrange Coded Federated Learning (L-CoFL) Model for Internet of Vehicles[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022:864-872.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Weiquan Ni]的文章
[Shaoliang Zhu]的文章
[Md Monjurul Karim]的文章
百度学术
百度学术中相似的文章
[Weiquan Ni]的文章
[Shaoliang Zhu]的文章
[Md Monjurul Karim]的文章
必应学术
必应学术中相似的文章
[Weiquan Ni]的文章
[Shaoliang Zhu]的文章
[Md Monjurul Karim]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。