题名 | Learning Feature Alignment Architecture for Domain Adaptation |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-9526-4
|
会议录名称 | |
页码 | 1-8
|
会议日期 | 18-23 July 2022
|
会议地点 | Padua, Italy
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In domain adaptation, where the feature distributions of the source and target domains are different, various distance-based methods have been proposed to handle the domain shift by minimizing the discrepancy between the source and target domains. These methods use hand-crafted bottleneck networks, which might hinder the alignment of hidden feature representations extracted from both domains. In this paper, we propose a new method called Alignment Architecture Search with Population Correlation (AASPC) to automatically learn the architecture of the bottleneck network that can align the source and target domains. The proposed AASPC method introduces a new similarity function called Population Correlation (PC) to measure the domain discrepancy. The proposed AASPC method leverages PC to learn the alignment architecture and domaininvariant feature representation. Experiments on several benchmark datasets, including Office-31, Office-Home, and VisDA2017, show the effectiveness of the proposed AASPC method. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Shenzhen fundamental research program[JCYJ20210324105000003]
; NSFC[62076118]
|
WOS研究方向 | Computer Science
; Engineering
; Neurosciences & Neurology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
; Neurosciences
|
WOS记录号 | WOS:000867070905125
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9892615 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406473 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of Computer Science, University of Technology Sydney 2.Department of Computer Science and Engineering, Southern University of Science and Technology 3.Peng Cheng Laboratory |
推荐引用方式 GB/T 7714 |
Zhixiong Yue,Pengxin Guo,Yu Zhang,et al. Learning Feature Alignment Architecture for Domain Adaptation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论