中文版 | English
题名

Learning Feature Alignment Architecture for Domain Adaptation

作者
DOI
发表日期
2022
会议名称
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
ISSN
2161-4393
ISBN
978-1-6654-9526-4
会议录名称
页码
1-8
会议日期
18-23 July 2022
会议地点
Padua, Italy
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In domain adaptation, where the feature distributions of the source and target domains are different, various distance-based methods have been proposed to handle the domain shift by minimizing the discrepancy between the source and target domains. These methods use hand-crafted bottleneck networks, which might hinder the alignment of hidden feature representations extracted from both domains. In this paper, we propose a new method called Alignment Architecture Search with Population Correlation (AASPC) to automatically learn the architecture of the bottleneck network that can align the source and target domains. The proposed AASPC method introduces a new similarity function called Population Correlation (PC) to measure the domain discrepancy. The proposed AASPC method leverages PC to learn the alignment architecture and domaininvariant feature representation. Experiments on several benchmark datasets, including Office-31, Office-Home, and VisDA2017, show the effectiveness of the proposed AASPC method.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Shenzhen fundamental research program[JCYJ20210324105000003] ; NSFC[62076118]
WOS研究方向
Computer Science ; Engineering ; Neurosciences & Neurology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Neurosciences
WOS记录号
WOS:000867070905125
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9892615
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406473
专题工学院_计算机科学与工程系
作者单位
1.School of Computer Science, University of Technology Sydney
2.Department of Computer Science and Engineering, Southern University of Science and Technology
3.Peng Cheng Laboratory
推荐引用方式
GB/T 7714
Zhixiong Yue,Pengxin Guo,Yu Zhang,et al. Learning Feature Alignment Architecture for Domain Adaptation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhixiong Yue]的文章
[Pengxin Guo]的文章
[Yu Zhang]的文章
百度学术
百度学术中相似的文章
[Zhixiong Yue]的文章
[Pengxin Guo]的文章
[Yu Zhang]的文章
必应学术
必应学术中相似的文章
[Zhixiong Yue]的文章
[Pengxin Guo]的文章
[Yu Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。