中文版 | English
题名

Effective, Efficient and Robust Neural Architecture Search

作者
DOI
发表日期
2022
会议名称
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
ISSN
2161-4393
ISBN
978-1-6654-9526-4
会议录名称
页码
1-8
会议日期
18-23 July 2022
会议地点
Padua, Italy
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Designing neural network architecture for embedded devices is practical but challenging because the models are expected to be not only accurate but also enough lightweight and robust. However, it is challenging to balance those trade-offs manually because of the large search space. To solve this problem, we propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to automatically search a neural network architecture that balances the performance, robustness, and resource consumption. Unlike previous studies, the objective function of the proposed E2RNAS method is formulated as a multi-objective bi-level optimization problem with the upper-level subproblem as a multi-objective optimization problem that considers the performance, robustness, and resource consumption. To solve the proposed objective function, we integrate the multiple-gradient descent algorithm, a widely studied gradient-based multi-objective optimization algorithm, with the bi-level optimization. Experiments on benchmark datasets show that the proposed E2RNAS method can find robust architecture with low resource consumption and comparable classification accuracy.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
NSFC["62136005","62076118"]
WOS研究方向
Computer Science ; Engineering ; Neurosciences & Neurology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Neurosciences
WOS记录号
WOS:000867070906038
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9892654
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406474
专题工学院_计算机科学与工程系
作者单位
1.School of Computer Science, University of Technology Sydney
2.Department of Computer Science and Engineering, Southern University of Science and Technology
3.Peng Cheng Laboratory
推荐引用方式
GB/T 7714
Zhixiong Yue,Baijiong Lin,Yu Zhang,et al. Effective, Efficient and Robust Neural Architecture Search[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhixiong Yue]的文章
[Baijiong Lin]的文章
[Yu Zhang]的文章
百度学术
百度学术中相似的文章
[Zhixiong Yue]的文章
[Baijiong Lin]的文章
[Yu Zhang]的文章
必应学术
必应学术中相似的文章
[Zhixiong Yue]的文章
[Baijiong Lin]的文章
[Yu Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。