题名 | Preventing Undesirable Behaviors of Neural Networks via Evolutionary Constrained Learning |
作者 | |
通讯作者 | Xin Yao |
DOI | |
发表日期 | 2022
|
会议名称 | 2022 International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-9526-4
|
会议录名称 | |
页码 | 1-7
|
会议日期 | 18-23 July 2022
|
会议地点 | Padua, Italy
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The extensive use of artificial intelligence (AI) in the real world brings some potential risks due to the undesirable behavior exhibited by AI systems using data-driven machine learning (ML) at their cores. Thus, preventing undesirable behaviors of ML, such as opacity (lack of transparency and explainability), unfairness (bias or discrimination), unsafety and insecurity, privacy disclosure, etc., is an imperative and pressing challenge. This work proposes an evolutionary constrained learning (ECL) framework for constructing ML models that can satisfy behavioral constraints so that the undesirable behaviors can be prevented. To evaluate our framework, we use it to create neural network models that preclude the undesirable behavior (that is, unfairness) on different benchmark datasets. The experimental results demonstrate the effectiveness of our proposed ECL approach for preventing undesirable behaviors of ML. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
; Engineering
; Neurosciences & Neurology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
; Neurosciences
|
WOS记录号 | WOS:000867070900058
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9891926 |
出版状态 | 正式出版
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406475 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Research Institute of Trustworthy Autonomous Systems (RITAS), Southern University of Science and Technology, Shenzhen, China 2.Trustworthiness Theory Research Center, Huawei Technologies Co., Ltd., Shenzhen, China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Changwu Huang,Zeqi Zhang,Bifei Mao,et al. Preventing Undesirable Behaviors of Neural Networks via Evolutionary Constrained Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-7.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Preventing Undesirab(878KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论