题名 | A Fault Detection Method Based on Bearing Dynamics with Multi-frequency Sinusoidal Signal |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | 41st Chinese Control Conference (CCC)
|
ISSN | 1934-1768
|
ISBN | 978-1-6654-8256-1
|
会议录名称 | |
页码 | 3126-3131
|
会议日期 | 25-27 July 2022
|
会议地点 | Hefei, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Bearing is a common and important component in the industry, and it is crucial to detect and diagnose its working condition. According to the characteristic the motion process of the bearing that is a periodic nonlinear system with sinusoidal input, a bearing fault detection method based on the nonlinear system with multi-frequency sinusoidal input is proposed. Through the dynamics modeling of the motion for the bearing, it is found that its input and output have the characteristics of almost periodic function. Using the periodogram-based asymptotic local fault detection method, the fault detection problem is transformed into a hypothesis test problem, and a threshold is obtained by the given confidence and the degree of freedom of a specific frequency matrix. The method can effectively and quickly monitor the early minor faults in strong noise environment. The realization and performance of this bearing detection method are illustrated by the simulated vibration signal of the bearing. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Key Research and Development Program of China[2019YFB1705401]
; Natural Science Foundation of China["61873118","61903179"]
; Science, Technology and Innovation Commission of Shenzhen Municipality["ZDSYS20200811143601004","RCBS20200714114918137"]
|
WOS研究方向 | Automation & Control Systems
|
WOS类目 | Automation & Control Systems
|
WOS记录号 | WOS:000932071603042
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9901612 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406481 |
专题 | 工学院_机械与能源工程系 前沿与交叉科学研究院 |
作者单位 | 1.Department of Mechanical and Energy Engineering, Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China 2.Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, P. R. China |
第一作者单位 | 机械与能源工程系 |
第一作者的第一单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Xiaohong Li,Zhicheng Li,Zaiyue Yang. A Fault Detection Method Based on Bearing Dynamics with Multi-frequency Sinusoidal Signal[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:3126-3131.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论