中文版 | English
题名

Meta Distribution Alignment for Generalizable Person Re-Identification

作者
DOI
发表日期
2022
会议名称
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISSN
1063-6919
ISBN
978-1-6654-6947-0
会议录名称
页码
2477-2486
会议日期
18-24 June 2022
会议地点
New Orleans, LA, USA
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Domain Generalizable (DG) person ReID is a challenging task which trains a model on source domains yet generalizes well on target domains. Existing methods use source domains to learn domain-invariant features, and assume those features are also irrelevant with target domains. However, they do not consider the target domain information which is unavailable in the training phrase of DG. To address this issue, we propose a novel Meta Distribution Alignment (MDA) method to enable them to share similar distribution in a test-time-training fashion. Specifically, since high-dimensional features are difficult to constrain with a known simple distribution, we first introduce an intermediate latent space constrained to a known prior distribution. The source domain data is mapped to this latent space and then reconstructed back. A meta-learning strategy is introduced to facilitate generalization and support fast adaption. To reduce their discrepancy, we further propose a test-time adaptive updating strategy based on the latent space which efficiently adapts model to unseen domains with a few samples. Extensive experimental results show that our model outperforms the state-of-the-art methods by up to 5.2% R-1 on average on the large-scale and 4.7% R-1 on the single-source domain generalization ReID benchmark. Source code is publicly available at https://github.com/haoni0812/MDA.git.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Key Research and Development Program of China[2018AAA0102200]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号
WOS:000867754202073
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9880010
引用统计
被引频次[WOS]:34
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406482
专题南方科技大学
作者单位
1.School of Computer Science and Engineering, University of Electronic Science and Technology of China
2.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Hao Ni,Jingkuan Song,Xiaopeng Luo,et al. Meta Distribution Alignment for Generalizable Person Re-Identification[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022:2477-2486.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hao Ni]的文章
[Jingkuan Song]的文章
[Xiaopeng Luo]的文章
百度学术
百度学术中相似的文章
[Hao Ni]的文章
[Jingkuan Song]的文章
[Xiaopeng Luo]的文章
必应学术
必应学术中相似的文章
[Hao Ni]的文章
[Jingkuan Song]的文章
[Xiaopeng Luo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。