中文版 | English
题名

Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression

作者
DOI
发表日期
2022
会议名称
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ISSN
1063-6919
ISBN
978-1-6654-6947-0
会议录名称
页码
17591-17600
会议日期
18-24 June 2022
会议地点
New Orleans, LA, USA
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find intercorrelations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18x compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China["62020106008","62122018","61772116","61872064"] ; Sichuan Science and Technology Program[2019JDTD0005]
WOS研究方向
Computer Science ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号
WOS:000870783003041
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9880036
引用统计
被引频次[WOS]:27
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406486
专题南方科技大学
作者单位
1.Center for Future Media, University of Electronic Science and Technology of China
2.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Xiaosu Zhu,Jingkuan Song,Lianli Gao,et al. Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022:17591-17600.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiaosu Zhu]的文章
[Jingkuan Song]的文章
[Lianli Gao]的文章
百度学术
百度学术中相似的文章
[Xiaosu Zhu]的文章
[Jingkuan Song]的文章
[Lianli Gao]的文章
必应学术
必应学术中相似的文章
[Xiaosu Zhu]的文章
[Jingkuan Song]的文章
[Lianli Gao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。