题名 | Deep Residual Learning for OTFS Channel Estimation with Arbitrary Noise |
作者 | |
DOI | |
发表日期 | 2022
|
ISSN | 2474-9133
|
ISBN | 978-1-6654-5978-5
|
会议录名称 | |
页码 | 320-324
|
会议日期 | 11-13 Aug. 2022
|
会议地点 | Sanshui, Foshan, China
|
摘要 | Orthogonal time frequency space (OTFS) modu-lation has proved its capability of achieving significant error performance advantages over orthogonal frequency division mul-tiplexing (OFDM) in high-mobility scenarios. One challenge for OTFS channel estimation is that the performance of model-based estimators will drop dramatically in the scenarios with unknown and burst noise. In this paper, we model the channel estimation as a denoising problem and adopt a deep residual denoising network (DRDN) approach to implicitly learn the residual noise for recovering the channel matrix. Different from existing model-based channel estimators which only work well under white Gaussian noise, our proposed DRDN-based method is able to handle arbitrary noise, including both the correlated Gaussian noise and the non-Gaussian noise (e.g., t-distribution noise) cases. Finally, our simulations verify the effectiveness of the proposed OTFS channel estimation approach in arbitrary noise environments. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9896721 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406487 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.University of New South Wales, Sydney, Australia |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Xiaoqi Zhang,Weijie Yuan,Chang Liu. Deep Residual Learning for OTFS Channel Estimation with Arbitrary Noise[C],2022:320-324.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论