中文版 | English
题名

Residual Learning based Channel Estimation for OTFS system

作者
DOI
发表日期
2022
ISSN
2474-9133
ISBN
978-1-6654-5978-5
会议录名称
页码
275-280
会议日期
11-13 Aug. 2022
会议地点
Sanshui, Foshan, China
摘要
Orthogonal time frequency space (OTFS) systems can effectively balance the Doppler shift by transforming the channel with a drastic change in the time-frequency (TF) domain into a stable channel in the delay-Doppler (DD) domain. In order to take full advantage of the OTFS system, accurate channel estimation results are critical in OTFS systems. In this paper, a model-driven deep learning (DL)-based channel estimation technique is proposed for OTFS in the DD domain. The presented channel estimation scheme has two parts. The first part takes advantage of the traditional orthogonal matching pursuit (OMP) algorithm to generate preliminary channel estimation results. The second part uses a deep residual learning network (ResNet) to further process the rough estimation results to get an accurate OTFS channel estimation. Simulation results demonstrate that the performance of the proposed model-driven ResNet-based scheme is significantly better than the traditional OMP algorithm, and there is about 6dB performance gain when the size of an OTFS frame is 128×16 and the normalized mean squared error (NMSE) is 0.00173. It also proves that the proposed ResNet-based channel estimation scheme can be applied to different scenarios and achieve good robustness.
关键词
学校署名
其他
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9896637
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406488
专题南方科技大学
作者单位
1.School of Information Communication Engineering, Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science and Technology University, China
2.Xi'an University of Posts & Telecommunications
3.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Qingyu Li,Yi Gong,Fanke Meng,et al. Residual Learning based Channel Estimation for OTFS system[C],2022:275-280.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qingyu Li]的文章
[Yi Gong]的文章
[Fanke Meng]的文章
百度学术
百度学术中相似的文章
[Qingyu Li]的文章
[Yi Gong]的文章
[Fanke Meng]的文章
必应学术
必应学术中相似的文章
[Qingyu Li]的文章
[Yi Gong]的文章
[Fanke Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。