中文版 | English
题名

Spatio-Temporal Activity Recognition for Evolutionary Search Behavior Prediction

作者
DOI
发表日期
2022
会议名称
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
ISSN
2161-4393
ISBN
978-1-6654-9526-4
会议录名称
页码
1-8
会议日期
18-23 July 2022
会议地点
Padua, Italy
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Traditional methods for solving problems within computer science rely mostly upon the application of handcrafted algorithms. As however manual engineering of them can be considered to be a tedious process, it is interesting to consider how far internal mechanisms can be directly learned in an end-to-end manner instead. This is especially tempting to consider for metaheuristic and evolutionary optimization routines which inherently rely upon creating abundant amounts of data during run-time. To implement such an approach for these types of algorithms, it effectively requires a pipeline to first acquire derandomized algorithm components in a domain-dependent manner and secondly a mapping to select them based upon characteristic features which unveil the black box character of an optimization problem. While in principle, within our prior work we proposed methods for extracting spatial features from metadata, these unfortunately fail to acknowledge the time-dependent nature of it. Thus, fail in scenarios when the inputs generated from initial iterations are not expressive enough. For this reason we specifically develop within this work architectures for spatio-temporal data processing. Particularly, we find that our proposed GCN-GRU and LSTM architectures, which take inspiration from CNN-LSTMs originally proposed for activity recognition in multimedia data-streams, demonstrate high efficiency and most consistent performance on time series of variable length. Further, we can also demonstrate that the class activation map (CAM) for interpretable learning with time series data helps to understand and reflects problem-dependent properties of the search behavior of an optimization algorithm.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
European Union[766186]
WOS研究方向
Computer Science ; Engineering ; Neurosciences & Neurology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Neurosciences
WOS记录号
WOS:000867070904117
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9892483
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406494
专题南方科技大学
作者单位
1.CERCIA, School of Computer Science, University of Birmingham, UK
2.Honda Research Institute Europe GmbH, Offenbach a.M., Germany
3.NEC Laboratories Europe GmbH, Heidelberg, Germany
4.Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Stephen Friess,Peter Tiňo,Stefan Menzel,et al. Spatio-Temporal Activity Recognition for Evolutionary Search Behavior Prediction[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Stephen Friess]的文章
[Peter Tiňo]的文章
[Stefan Menzel]的文章
百度学术
百度学术中相似的文章
[Stephen Friess]的文章
[Peter Tiňo]的文章
[Stefan Menzel]的文章
必应学术
必应学术中相似的文章
[Stephen Friess]的文章
[Peter Tiňo]的文章
[Stefan Menzel]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。