中文版 | English
题名

Advanced Face Anti-Spoofing with Depth Segmentation

作者
DOI
发表日期
2022
会议名称
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
ISSN
2161-4393
ISBN
978-1-6654-9526-4
会议录名称
页码
1-6
会议日期
18-23 July 2022
会议地点
Padua, Italy
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Face anti-spoofing (FAS) plays a vital role in securing face recognition systems. In state-of-the-art FAS methods, face depth is determined for every position in a facial image. However, face depth varies at different positions, which leads to low accuracy when predicting face depth. As we observe, spoof faces have depth values that are 0, while live faces have depths that are equal to or greater than 0. As a result, for faces that have a depth greater than 0, if they are estimated as merely a positive value, instead of an accurate value, the prediction of whether they are real or not will not change. Further, if a range of depths are considered as one category, then there are more samples per category for the network training. Based on the above observation, in this paper, we propose to aggregate simple depth values to the same category and perform classification to optimize the FAS network. To evaluate the performance of the proposed approach, we perform extensive experiments on four benchmark databases, respectively, OULU-NPU, SiW, CASIA-FASD, and Replay-Attack. The results demonstrate that the proposed approach outperforms state-of-the-art methods on intra-database testing. Furthermore, our proposed approach shows advanced performance on cross-database testing.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
WOS研究方向
Computer Science ; Engineering ; Neurosciences & Neurology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Neurosciences
WOS记录号
WOS:000867070907063
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9892826
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406495
专题南方科技大学
作者单位
1.Southern University of Science and Technology
2.University of New South Wales Canberra
3.Peking University
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Licheng Zhang,Nan Sun,Xihong Wu,et al. Advanced Face Anti-Spoofing with Depth Segmentation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-6.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Licheng Zhang]的文章
[Nan Sun]的文章
[Xihong Wu]的文章
百度学术
百度学术中相似的文章
[Licheng Zhang]的文章
[Nan Sun]的文章
[Xihong Wu]的文章
必应学术
必应学术中相似的文章
[Licheng Zhang]的文章
[Nan Sun]的文章
[Xihong Wu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。