题名 | Advanced Face Anti-Spoofing with Depth Segmentation |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-9526-4
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 18-23 July 2022
|
会议地点 | Padua, Italy
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Face anti-spoofing (FAS) plays a vital role in securing face recognition systems. In state-of-the-art FAS methods, face depth is determined for every position in a facial image. However, face depth varies at different positions, which leads to low accuracy when predicting face depth. As we observe, spoof faces have depth values that are 0, while live faces have depths that are equal to or greater than 0. As a result, for faces that have a depth greater than 0, if they are estimated as merely a positive value, instead of an accurate value, the prediction of whether they are real or not will not change. Further, if a range of depths are considered as one category, then there are more samples per category for the network training. Based on the above observation, in this paper, we propose to aggregate simple depth values to the same category and perform classification to optimize the FAS network. To evaluate the performance of the proposed approach, we perform extensive experiments on four benchmark databases, respectively, OULU-NPU, SiW, CASIA-FASD, and Replay-Attack. The results demonstrate that the proposed approach outperforms state-of-the-art methods on intra-database testing. Furthermore, our proposed approach shows advanced performance on cross-database testing. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Engineering
; Neurosciences & Neurology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
; Neurosciences
|
WOS记录号 | WOS:000867070907063
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9892826 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406495 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology 2.University of New South Wales Canberra 3.Peking University |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Licheng Zhang,Nan Sun,Xihong Wu,et al. Advanced Face Anti-Spoofing with Depth Segmentation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论