中文版 | English
题名

Adaptive Resonance Theory-based Clustering for Handling Mixed Data

作者
DOI
发表日期
2022
会议名称
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
ISSN
2161-4393
ISBN
978-1-6654-9526-4
会议录名称
页码
1-8
会议日期
18-23 July 2022
会议地点
Padua, Italy
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
This paper proposes an Adaptive Resonance Theory (ART)-based clustering algorithm for a dataset which contains numerical and categorical attributes simultaneously. In the proposed algorithm, similarity between numerical attributes is calculated by the correntropy-based nonlinear similarity measurement, while similarity between categorical attributes is defined by a hamming distance-based approach. One advantage of the proposed algorithm is that the algorithm continually and adaptively generates a sufficient number of nodes for clustering from given data points. Empirical studies on various datasets show that the proposed algorithm has comparable clustering performance to the representative mixed data clustering algorithms.
关键词
学校署名
其他
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075]
WOS研究方向
Computer Science ; Engineering ; Neurosciences & Neurology
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Neurosciences
WOS记录号
WOS:000867070901070
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9892060
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406496
专题南方科技大学
作者单位
1.Department of Core Informatics, Osaka Metropolitan University, Osaka, Japan
2.Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, Shenzhen, China
3.Navigation College, Dalian Maritime University, Dalian, China
推荐引用方式
GB/T 7714
Naoki Masuyama,Yusuke Nojima,Hisao Ishibuchi,et al. Adaptive Resonance Theory-based Clustering for Handling Mixed Data[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Naoki Masuyama]的文章
[Yusuke Nojima]的文章
[Hisao Ishibuchi]的文章
百度学术
百度学术中相似的文章
[Naoki Masuyama]的文章
[Yusuke Nojima]的文章
[Hisao Ishibuchi]的文章
必应学术
必应学术中相似的文章
[Naoki Masuyama]的文章
[Yusuke Nojima]的文章
[Hisao Ishibuchi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。