题名 | Adaptive Resonance Theory-based Clustering for Handling Mixed Data |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-9526-4
|
会议录名称 | |
页码 | 1-8
|
会议日期 | 18-23 July 2022
|
会议地点 | Padua, Italy
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | This paper proposes an Adaptive Resonance Theory (ART)-based clustering algorithm for a dataset which contains numerical and categorical attributes simultaneously. In the proposed algorithm, similarity between numerical attributes is calculated by the correntropy-based nonlinear similarity measurement, while similarity between categorical attributes is defined by a hamming distance-based approach. One advantage of the proposed algorithm is that the algorithm continually and adaptively generates a sufficient number of nodes for clustering from given data points. Empirical studies on various datasets show that the proposed algorithm has comparable clustering performance to the representative mixed data clustering algorithms. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075]
|
WOS研究方向 | Computer Science
; Engineering
; Neurosciences & Neurology
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
; Neurosciences
|
WOS记录号 | WOS:000867070901070
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9892060 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406496 |
专题 | 南方科技大学 |
作者单位 | 1.Department of Core Informatics, Osaka Metropolitan University, Osaka, Japan 2.Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, Shenzhen, China 3.Navigation College, Dalian Maritime University, Dalian, China |
推荐引用方式 GB/T 7714 |
Naoki Masuyama,Yusuke Nojima,Hisao Ishibuchi,et al. Adaptive Resonance Theory-based Clustering for Handling Mixed Data[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论