题名 | Gas Sensor Array with Pattern Recognition Algorithms for Highly Sensitive and Selective Discrimination of Trimethylamine |
作者 | |
通讯作者 | Zhao, Changhui; Wang, Fei |
发表日期 | 2022-10-01
|
DOI | |
发表期刊 | |
EISSN | 2640-4567
|
摘要 | Artificial senses like electronic nose, which ameliorates the problem of poor selectivity from single gas sensor, have elicited keen research interest to monitor hazardous gases. Herein, the doping effects of gallium on In2O3 nanotubes (NTs) are investigated and a four-component sensor array for the detection of trimethylamine (TMA) is reported. All-gallium-doped/alloyed In2O3 (Ga-In2O3) sensors show improved sensitivity and selectivity to TMA at an operating temperature of 240 degrees C, with 5 mol% Ga-doped/alloyed one displaying the highest response in the range of 0.5-100 ppm and the lowest detection limit of 13.83 ppb. Based on the gas-sensing properties, a four-component sensor array is fabricated, which shows unique response patterns in variable-gas backgrounds. Herein, back propagation neural network (BPNN), radial basis function neural network (RBFNN), and principal component analysis-based linear regression (PCA-LR) are trained with the gas-sensing data to discriminate different gases with high accuracy, as well as to predict the concentrations of target gases in different gases and gas mixtures. Furthermore, accuracies of 92.85% and 99.14% can be achieved for the classification of six gases (three single gases and three binary gas mixtures) and for the prediction of TMA concentrations in the presence of different concentrations of TMA and acetone, respectively. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Key R & D Program of China["2020YFB2008604","K21799109","K21799110"]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Robotics
|
WOS记录号 | WOS:000868564100001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:22
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406508 |
专题 | 工学院_深港微电子学院 |
作者单位 | 1.Southern Univ Sci & Technol, Sch Microelect, Shenzhen 518055, Peoples R China 2.Anhui Univ, Inst Phys Sci, Hefei 230601, Peoples R China 3.Anhui Univ, Inst Informat Technol, Hefei 230601, Peoples R China |
第一作者单位 | 深港微电子学院 |
通讯作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Ren, Wenjie,Zhao, Changhui,Niu, Gaoqiang,et al. Gas Sensor Array with Pattern Recognition Algorithms for Highly Sensitive and Selective Discrimination of Trimethylamine[J]. ADVANCED INTELLIGENT SYSTEMS,2022.
|
APA |
Ren, Wenjie,Zhao, Changhui,Niu, Gaoqiang,Zhuang, Yi,&Wang, Fei.(2022).Gas Sensor Array with Pattern Recognition Algorithms for Highly Sensitive and Selective Discrimination of Trimethylamine.ADVANCED INTELLIGENT SYSTEMS.
|
MLA |
Ren, Wenjie,et al."Gas Sensor Array with Pattern Recognition Algorithms for Highly Sensitive and Selective Discrimination of Trimethylamine".ADVANCED INTELLIGENT SYSTEMS (2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论