题名 | Improving Material Property Prediction by Leveraging the Large-Scale Computational Database and Deep Learning |
作者 | |
通讯作者 | Yang, Yuedong; Lu, Yutong |
发表日期 | 2022-09-29
|
DOI | |
发表期刊 | |
ISSN | 1932-7447
|
EISSN | 1932-7455
|
卷号 | 126期号:38 |
摘要 | Predicting physical and chemical properties of materials based on structures is critical for bottom-up material design. Many property prediction models and material training databases have been proposed, but accurately predicting properties is still challenging. Here, we report a package of ???Matgen + CrystalNet??? approach to improve material property prediction. We construct a large-scale material genome database (Matgen) containing 76k materials collected from an experimentally observed database and compute their properties through the density functional theory method with the Perdew???Burke??? Ernzerhof (PBE) functional. Our database achieves the same computation accuracy by comparing part of our results with those from the open Material Project and Open Quantum Materials Database, all with PBE computations, and contains more diverse chemical species and big-sized structures. Based on the computed properties of our comprehensive data set, we have developed a new graph neural network (GNN) model, namely, CrystalNet, by strengthening the message passing between atoms and bonds to mimic physical and chemical interactions. The model is shown to outperform other GNN prediction models. The proof-of-concept applications, such as fine-tuning data on experimental values to improve prediction accuracy and bandgap prediction on hypothetical materials, showcase the usability and potential capacity of our package of ???database + model??? to improve material design. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
|
WOS类目 | Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
|
WOS记录号 | WOS:000867420700001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/406526 |
专题 | 工学院_材料科学与工程系 量子科学与工程研究院 |
作者单位 | 1.Natl Supercomputer Ctr Guangzhou, Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China 2.& Shenzhen Inst Quantum Sci Engn & Guangdong Prov, Southern Univ Sci & Technol, Dept Mat Sci & Engn, & Shenzhen Key Lab Adv Quantum Funct Mat & Device, Shenzhen 518055, Guangdong, Peoples R China |
通讯作者单位 | 材料科学与工程系; 量子科学与工程研究院 |
推荐引用方式 GB/T 7714 |
Chen, Pin,Chen, Jianwen,Yan, Hui,et al. Improving Material Property Prediction by Leveraging the Large-Scale Computational Database and Deep Learning[J]. Journal of Physical Chemistry C,2022,126(38).
|
APA |
Chen, Pin.,Chen, Jianwen.,Yan, Hui.,Mo, Qing.,Xu, Zexin.,...&Lu, Yutong.(2022).Improving Material Property Prediction by Leveraging the Large-Scale Computational Database and Deep Learning.Journal of Physical Chemistry C,126(38).
|
MLA |
Chen, Pin,et al."Improving Material Property Prediction by Leveraging the Large-Scale Computational Database and Deep Learning".Journal of Physical Chemistry C 126.38(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论