中文版 | English
题名

Joint Semantic Intelligent Detection of Vehicle Color under Rainy Conditions

作者
通讯作者Hu, Mingdi; Jing, Bingyi
发表日期
2022-10-01
DOI
发表期刊
EISSN
2227-7390
卷号10期号:19
摘要
Color is an important feature of vehicles, and it plays a key role in intelligent traffic management and criminal investigation. Existing algorithms for vehicle color recognition are typically trained on data under good weather conditions and have poor robustness for outdoor visual tasks. Fine vehicle color recognition under rainy conditions is still a challenging problem. In this paper, an algorithm for jointly deraining and recognizing vehicle color, (JADAR), is proposed, where three layers of UNet are embedded into RetinaNet-50 to obtain joint semantic fusion information. More precisely, the UNet subnet is used for deraining, and the feature maps of the recovered clean image and the extracted feature maps of the input image are cascaded into the Feature Pyramid Net (FPN) module to achieve joint semantic learning. The joint feature maps are then fed into the class and box subnets to classify and locate objects. The Rain Vehicle Color-24 dataset is used to train the JADAR for vehicle color recognition under rainy conditions, and extensive experiments are conducted. Since the deraining and detecting modules share the feature extraction layers, our algorithm maintains the test time of RetinaNet-50 while improving its robustness. Testing on self-built and public real datasets, the mean average precision (mAP) of vehicle color recognition reaches 72.07%, which beats both sate-of-the-art algorithms for vehicle color recognition and popular target detection algorithms.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[62071378] ; Shaanxi Province International Science and Technology Cooperation Program[2022KW-04] ; Xi'an Science and Technology Plan Project[21XJZZ0072]
WOS研究方向
Mathematics
WOS类目
Mathematics
WOS记录号
WOS:000867088100001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406527
专题理学院_统计与数据科学系
作者单位
1.Xian Univ Posts & Telecommun, Sch Commun & Informat Engn, Xian 710121, Peoples R China
2.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
通讯作者单位统计与数据科学系
推荐引用方式
GB/T 7714
Hu, Mingdi,Wu, Yi,Fan, Jiulun,et al. Joint Semantic Intelligent Detection of Vehicle Color under Rainy Conditions[J]. MATHEMATICS,2022,10(19).
APA
Hu, Mingdi,Wu, Yi,Fan, Jiulun,&Jing, Bingyi.(2022).Joint Semantic Intelligent Detection of Vehicle Color under Rainy Conditions.MATHEMATICS,10(19).
MLA
Hu, Mingdi,et al."Joint Semantic Intelligent Detection of Vehicle Color under Rainy Conditions".MATHEMATICS 10.19(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hu, Mingdi]的文章
[Wu, Yi]的文章
[Fan, Jiulun]的文章
百度学术
百度学术中相似的文章
[Hu, Mingdi]的文章
[Wu, Yi]的文章
[Fan, Jiulun]的文章
必应学术
必应学术中相似的文章
[Hu, Mingdi]的文章
[Wu, Yi]的文章
[Fan, Jiulun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。