中文版 | English
题名

Multi-Modal Graph Interaction for Multi-Graph Convolution Network in Urban Spatiotemporal Forecasting

作者
通讯作者Wang, Yunhai
发表日期
2022-10-01
DOI
发表期刊
EISSN
2071-1050
卷号14期号:19
摘要
Graph convolution network-based approaches have been recently used to model region-wise relationships in region-level prediction problems in urban computing. Each relationship represents a kind of spatial dependency, such as region-wise distance or functional similarity. To incorporate multiple relationships into a spatial feature extraction, we define the problem as a multi-modal machine learning problem on multi-graph convolution networks. Leveraging the advantage of multi-modal machine learning, we propose to develop modality interaction mechanisms for this problem in order to reduce the generalization error by reinforcing the learning of multi-modal coordinated representations. In this work, we propose two interaction techniques for handling features in lower layers and higher layers, respectively. In lower layers, we propose grouped GCN to combine the graph connectivity from different modalities for a more complete spatial feature extraction. In higher layers, we adapt multi-linear relationship networks to GCN by exploring the dimension transformation and freezing part of the covariance structure. The adapted approach, called multi-linear relationship GCN, learns more generalized features to overcome the train-test divergence induced by time shifting. We evaluated our model on a ride-hailing demand forecasting problem using two real-world datasets. The proposed technique outperforms state-of-the art baselines in terms of prediction accuracy, training efficiency, interpretability and model robustness.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of China[2019YFB1600300]
WOS研究方向
Science & Technology - Other Topics ; Environmental Sciences & Ecology
WOS类目
Green & Sustainable Science & Technology ; Environmental Sciences ; Environmental Studies
WOS记录号
WOS:000867106600001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406537
专题工学院_计算机科学与工程系
作者单位
1.Shandong Univ, Sch Comp Sci & Technol, Qingdao 250012, Peoples R China
2.Didi Chuxing, Beijing 065001, Peoples R China
3.Draweast Tech, Data Sci & Artificial Intelligence Dept, Beijing 065001, Peoples R China
4.Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong 999077, Peoples R China
5.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Lingyu,Geng, Xu,Qin, Zhiwei,et al. Multi-Modal Graph Interaction for Multi-Graph Convolution Network in Urban Spatiotemporal Forecasting[J]. SUSTAINABILITY,2022,14(19).
APA
Zhang, Lingyu.,Geng, Xu.,Qin, Zhiwei.,Wang, Hongjun.,Wang, Xiao.,...&Wang, Yunhai.(2022).Multi-Modal Graph Interaction for Multi-Graph Convolution Network in Urban Spatiotemporal Forecasting.SUSTAINABILITY,14(19).
MLA
Zhang, Lingyu,et al."Multi-Modal Graph Interaction for Multi-Graph Convolution Network in Urban Spatiotemporal Forecasting".SUSTAINABILITY 14.19(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Lingyu]的文章
[Geng, Xu]的文章
[Qin, Zhiwei]的文章
百度学术
百度学术中相似的文章
[Zhang, Lingyu]的文章
[Geng, Xu]的文章
[Qin, Zhiwei]的文章
必应学术
必应学术中相似的文章
[Zhang, Lingyu]的文章
[Geng, Xu]的文章
[Qin, Zhiwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。