中文版 | English
题名

Direct environmental TEM observation of silicon diffusion-induced strong metal-silica interaction for boosting CO2 hydrogenation

作者
通讯作者Yang, Feng
共同第一作者Wang, Lei; Zhang, Lei
发表日期
2023-02
DOI
发表期刊
ISSN
1998-0124
EISSN
1998-0000
卷号16期号:2页码:2209–2217
摘要

For the high-temperature catalytic reaction, revealing the interface of catalyst-support and its evolution under reactive conditions is of crucial importance for understanding the reaction mechanism. However, much less is known about the atomic-scale interface of the hard-to-reduce silica-metal compared to that of reducible oxide systems. Here we reported the general behaviors of SiO2 migration onto various metal (Pt, Co, Rh, Pd, Ru, and Ni) nanocrystals supported on silica. Typically, the Pt/SiO2 catalytic system, which boosted the CO2 hydrogenation to CO, exhibited the reduction of Si-0 at the Pt-SiO2 interface under H-2 and further Si diffusion into the near surface of Pt nanoparticles, which was unveiled by in-situ environmental transmission electron microscopy coupled with spectroscopies. This reconstructed interface with Si diffused into Pt increased the sinter resistance of catalyst and thus improved the catalytic stability. The morphology of metal nanoparticles with SiO2 overlayer were dynamically evolved under reducing, vacuum, and oxidizing atmospheres, with a thicker SiO2 layer under oxidizing condition. The theoretical calculations revealed the mechanism that the Si-Pt surface provided synergistic sites for the activation of CO2/H-2 to produce CO with lower energy barriers, consequently boosting the high-temperature reverse water-gas shift reaction. These findings deepen the understanding toward the interface structure of inert oxide supported catalysts.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 共同第一 ; 通讯
资助项目
National Natural Science Foundation of China[
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目
Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号
WOS:000866366100002
出版者
EI入藏号
20224212903813
EI主题词
Carbon dioxide ; Catalysis ; Catalyst supports ; High resolution transmission electron microscopy ; Hydrogenation ; Metal nanoparticles ; Morphology ; Nickel compounds ; Palladium compounds ; Phase interfaces ; Platinum compounds ; Ruthenium compounds ; Silicon ; Silicon oxides ; SiO2 nanoparticles ; Water gas shift
EI分类号
Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals:549.3 ; Optical Devices and Systems:741.3 ; Nanotechnology:761 ; Physical Chemistry:801.4 ; Chemical Reactions:802.2 ; Chemical Agents and Basic Industrial Chemicals:803 ; Chemical Products Generally:804 ; Inorganic Compounds:804.2 ; Physical Properties of Gases, Liquids and Solids:931.2 ; Materials Science:951
来源库
Web of Science
出版状态
正式出版
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406542
专题理学院_化学系
作者单位
Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Peoples R China
第一作者单位化学系
通讯作者单位化学系
第一作者的第一单位化学系
推荐引用方式
GB/T 7714
Wang, Lei,Zhang, Lei,Zhang, Luyao,et al. Direct environmental TEM observation of silicon diffusion-induced strong metal-silica interaction for boosting CO2 hydrogenation[J]. Nano Research,2023,16(2):2209–2217.
APA
Wang, Lei.,Zhang, Lei.,Zhang, Luyao.,Yun, Yulong.,Wang, Kun.,...&Yang, Feng.(2023).Direct environmental TEM observation of silicon diffusion-induced strong metal-silica interaction for boosting CO2 hydrogenation.Nano Research,16(2),2209–2217.
MLA
Wang, Lei,et al."Direct environmental TEM observation of silicon diffusion-induced strong metal-silica interaction for boosting CO2 hydrogenation".Nano Research 16.2(2023):2209–2217.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Lei]的文章
[Zhang, Lei]的文章
[Zhang, Luyao]的文章
百度学术
百度学术中相似的文章
[Wang, Lei]的文章
[Zhang, Lei]的文章
[Zhang, Luyao]的文章
必应学术
必应学术中相似的文章
[Wang, Lei]的文章
[Zhang, Lei]的文章
[Zhang, Luyao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。