[1] Anderson P W. Through the Glass Lightly[J]. Science, 1995, 267(5204): 1615– 1616.
[2] Hodge I. Mysteries of the glass transition[J]. Physics Today, 2008, 61(1): 15.
[3] Couzin J. How much can human life span be extended[J]. Science, 2005, 309(5731): 83.
[4] Bernal J D. Geometry of the Structure of Monatomic Liquids[J]. Nature, 1960, 185(4706): 68–70.
[5] Bernal J D. A Geometrical Approach to the Structure Of Liquids[J]. Nature, 1959, 183(4655): 141–147.
[6] Zachariasbn W H. The Atomic Arrangement In Glass[J]. Journal of the American Chemical Society, 1932, 54: 3841–3851.
[7] Flory P J. The Configuration of Real Polymer Chains[J]. The Journal of Chemical Physics, 2004, 17(3): 303.
[8] Alexander S. Amorphous solids: their structure, lattice dynamics and elasticity[J]. Physics Reports, 1998, 296(2–4): 65–236.
[9] Gleiter H. Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today?[J]. Acta Materialia, 2008, 56(19): 5875–5893.
[10] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48(1): 279–306.
[11] Wang W H, Dong C, Shek C H. Bulk metallic glasses[J]. Materials Science and Engineering: R: Reports, 2004, 44(2–3): 45–89.
[12] Wooten F, Weaire D. A computer-generated model of the crystalline/amorphous interface in silicon[J]. Journal of Non-Crystalline Solids, 1989, 114(PART 2): 681–683.
[13] Johnson W L. Bulk Glass-Forming Metallic Alloys: Science and Technology[J]. MRS Bulletin, 1999, 24(10): 42–56.
[14] Greer A L. Metallic Glasses[J]. Science, 1995, 267(5206): 1947–1953.
[15] Qiao J C, Pelletier J M. Dynamic Mechanical Relaxation in Bulk Metallic Glasses: A Review[J]. Journal of Materials Science & Technology, 2014, 30(6): 523–545.
[16] Chen N, Martin L, Luzguine-Luzgin D V., et al. Role of Alloying Additions in Glass Formation and Properties of Bulk Metallic Glasses[J]. Materials, 2010, 3(12): 5320–5339.
[17] Qiao J C, Wang Q, Crespo D, et al. Amorphous physics and materials: Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review[J]. Chinese Physics B, 2017, 26(1): 016402.
[18] Halim Q, Mohamed N A N, Rejab M R M, et al. Metallic glass properties, processing method and development perspective: a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(5): 1231–1258.
[19] Sharma A, Zadorozhnyy V. Review of the Recent Development in Metallic Glass and Its Composites[J]. Metals, 2021, 11(12): 1933.
[20] Telford M. The case for bulk metallic glass[J]. Materials Today, 2004, 7(3): 36– 43.
[21] Williams E, Lavery N. Laser processing of bulk metallic glass: A review[J]. Journal of Materials Processing Technology, 2017, 247: 73–91.
[22] Wang H, Xiao S G, Zhang T, et al. Direct TEM observation of phase separation and crystallization in Cu45Zr45Ag10 metallic glass[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(6): 538–545.
[23] Ivanov Y P, Meylan C M, Panagiotopoulos N T, et al. In-situ TEM study of the crystallization sequence in a gold-based metallic glass[J]. Acta Materialia, 2020, 196: 52–60.
[24] Chen L, Wang Y, Zhang Z. Temperature distribution of wedge-shaped specimen in TEM[J]. Micron, 2018, 110: 46–49.
[25] Saka H, Kamino T, Arai S, et al. In Situ Heating Transmission Electron Microscopy[J]. MRS Bulletin, 2011, 33(2): 93–100.
[26] Wang K, Wu H, Ge M, et al. Exponential surface melting of Cu nanoparticles observed by in-situ TEM[J]. Materials Characterization, 2018, 145: 246–249.
[27] Neklyudova M, Sabater C, Erdamar A K, et al. In situ transmission electron microscope formation of a single-crystalline Bi film on an amorphous substrate[J]. Applied Physics Letters, 2017, 110(10): 103101.
[28] Li Z, Wang Z L, Wang Z. In situ tuning of crystallization pathways by electron beam irradiation and heating in amorphous bismuth ferrite films[J]. RSC Advances, 2018, 8(42): 23522–23528.
[29] Liu S Y, Cao Q P, Mu X, et al. In-situ TEM study of oxygen-modulated crystallization pathway in Ni-Zr metallic glass[J]. Journal of Alloys and Compounds, 2019, 800: 254–260.
[30] Zhang Z, Su D. Behaviour of TEM metal grids during in-situ heating experiments[J]. Ultramicroscopy, 2009, 109(6): 766–774.
[31] Falqui A, Loche D, Casu A. In Situ TEM Crystallization of Amorphous Iron Particles[J]. Crystals, 2020, 10(1): 41.
[32] Hansen T W, Wagner J B. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope[J]. ACS Catalysis, 2014, 4(6): 1673–1685.
[33] Jiang Y, Zhang Z, Yuan W, et al. Recent advances in gas-involved in situ studies via transmission electron microscopy[J]. Nano Research, 2017, 11(1): 42–67.
[34] Wu F, Yao N. Advances in windowed gas cells for in-situ TEM studies[J]. Nano Energy, 2015, 13: 735–756.
[35] Wu J, Shan H, Chen W, et al. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research[J]. Advanced Materials, 2016, 28(44): 9686–9712.
[36] Wagner J B, Cavalca F, Damsgaard C D, et al. Exploring the environmental transmission electron microscope[J]. Micron, 2012, 43(11): 1169–1175.
[37] Han S, Xia G J, Cai C, et al. Gas-assisted transformation of gold from fcc to the metastable 4H phase[J]. Nature Communications, 2020, 11(1): 1–9.
[38] Yuan W, Zhu B, Fang K, et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation[J]. Science, 2021, 371(6528): 517–521.
[39] Tang M, Yuan W, Ou Y, et al. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review[J]. ACS Catalysis, 2020, 10(24): 14419–14450.
[40] Liao H G, Zheng H. Liquid Cell Transmission Electron Microscopy[J]. Annual Review of Physical Chemistry, 2016, 67: 719–747.
[41] Yuk J M, Park J, Ercius P, et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells[J]. Science, 2012, 335(6077): 61–64.
[42] Nielsen M H, Aloni S, De Yoreo J J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways[J]. Science, 2014, 345(6201): 1158–1162.
[43] Mirsaidov U, Patterson J P, Zheng H. Liquid phase transmission electron microscopy for imaging of nanoscale processes in solution[J]. MRS Bulletin, 2020(45): 704–712.
[44] Kushima A, So K P, Su C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271–279.
[45] Zeng Z, Kang J, Yang J, et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates[J]. Nature Materials, 2019(18): 970–976.
[46] Zheng Q, Shangguan J, Li X, et al. Observation of Surface Ligands-Controlled Etching of Palladium Nanocrystals[J]. Nano Letters, 2021, 21: 6647.
[47] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59(6): 2243–2267.
[48] Zhang C, Ouyang D, Pauly S, et al. 3D printing of bulk metallic glasses[J]. Materials Science and Engineering: R, 2021, 145: 100625.
[49] Li H F, Zheng Y F. Recent advances in bulk metallic glasses for biomedical applications[J]. Acta Biomaterialia, 2016, 36: 1–20.
[50] Monfared A, Vali H, Faghihi S. Biocorrosion and biocompatibility of Zr–Cu– Fe–Al bulk metallic glasses[J]. Surface and Interface Analysis, 2013, 45(11–12): 1714–1720.
[51] Budhani R C, Goel T C, Chopra K L. Melt-spinning technique for preparation of metallic glasses[J]. Bulletin of Materials Science, 1982, 4(5): 549–561.
[52] Filipecka K, Pawlik P, Filipecki J. The effect of annealing on magnetic properties, phase structure and evolution of free volumes in Pr-Fe-B-W metallic glasses[J]. Journal of Alloys and Compounds, 2017, 694: 228–234.
[53] Wang Z, Georgarakis K, Nakayama K S, et al. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites[J]. Scientific Reports, 2016, 6(1): 1–11.
[54] Davies H A, Aucote J, Hull J B. Amorphous Nickel produced by Splat Quenching[J]. Nature Physical Science, 1973, 246(149): 13–14.
[55]Ding S, Liu Y, Li Y, et al. Combinatorial development of bulk metallic glasses[J]. Nature Materials, 2014, 13(5): 494–500.
[56] Johnson W L. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials[J]. Progress in Materials Science, 1986, 30(2): 81–134.
[57] Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1–2): 37–41.
[58] Suzuki H, Kanazawa I. Viscosities of the Zr-based bulk metallic glass-forming liquids[J]. Intermetallics, 2010, 18(10): 1809–1812.
[59] Martinez L M, Angell C A. A thermodynamic connection to the fragility of glass-forming liquids[J]. Nature, 2001, 410(6829): 663–667.
[60] Fulcher G S. Analysis of Recent Measurements of The Viscosity Of Glasses[J]. Journal of the American Ceramic Society, 1925, 8(6): 339–355.
[61] Turnbull D. Under what conditions can a glass be formed?[J]. Contemporary Physics, 2006, 10(5): 473–488.
[62] Bengtzelius U, Gotze W, Sjolander A. Dynamics of supercooled liquids and the glass transition[J]. Journal of Physics C: Solid State Physics, 1984, 17(33): 5915.
[63] Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition[J]. Nature, 2001, 410(6825): 259–267.
[64] Angell C A. Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems[J]. Journal of Non-Crystalline Solids, 1991, 131– 133(PART 1): 13–31.
[65] Novikov V N, Sokolov A P. Poisson’s ratio and the fragility of glass-forming liquids[J]. Nature, 2004, 431(7011): 961–963.
[66] Roland C M, Ngai K L. The anomalous Debye–Waller factor and the fragility of glasses[J]. The Journal of Chemical Physics, 1998, 104(8): 2967.
[67] Jiang M, Dai L. Intrinsic correlation between fragility and bulk modulus in metallic glasses[J]. Physical Review B, 2007, 76(5): 054204.
[68] Pasturel A, Tasci E S, Sluiter M H F, et al. Structural and dynamic evolution in liquid Au-Si eutectic alloy by ab initio molecular dynamics[J]. Physical Review B, 2010, 81(14): 140202.
[69] Ngai K L. Relaxation and Diffusion in Complex Systems[M]. New York, NY: 2011.
[70] Stevenson J D, Schmalian J, Wolynes P G. The shapes of cooperatively rearranging regions in glass-forming liquids[J]. Nature Physics, 2006, 2(4): 268– 274.
[71] Williams G, Watts D C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function[J]. Transactions of the Faraday Society, 1970, 66(0): 80–85.
[72] Wang W H. Dynamic relaxations and relaxation-property relationships in metallic glasses[J]. Progress in Materials Science, 2019, 106: 100561.
[73] Ruta B, Pineda E, Evenson Z. Relaxation processes and physical aging in metallic glasses[J]. Journal of Physics: Condensed Matter, 2017, 29(50): 503002.
[74] Berthier L. Dynamic heterogeneity in amorphous materials[J]. Physics, 2011, 4(42).
[75] Richert R. Heterogeneous dynamics in liquids: fluctuations inspace and time[J]. Journal of Physics: Condensed Matter, 2002, 14(23): R703.
[76] Pabst F, Gabriel J P, Böhmer T, et al. Generic Structural Relaxation in Supercooled Liquids[J]. Journal of Physical Chemistry Letters, 2021, 12(14): 3685–3690.
[77] Gallino I, Busch R. Relaxation Pathways in Metallic Glasses[J]. JOM, 2017, 69(11): 2171–2177.
[78] Ichitsubo T, Matsubara E, Yamamoto T, et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses[J]. Physical Review Letters, 2005, 95(24): 245501.
[79] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177–351.
[80] Voyles P M, Muller D A. Fluctuation microscopy in the STEM[J]. Ultramicroscopy, 2002, 93(2): 147–159.
[81] Yang W, Han C, Sun M. A novel medium-range structure in Zr80Pt20 metallic glass[J]. Materials Letters, 2022, 308: 131154.
[82] Bing W, BaoShuang S, XuanQiao G, et al. Local structural signs for distinct crystallization behaviors of monatomic metals[J]. Journal of Non-Crystalline Solids, 2022, 576: 121247.
[83] Liu X J, Hui X D, Chen G L, et al. Local atomic structures in Zr–Ni metallic glasses[J]. Physics Letters A, 2009, 373(29): 2488–2493.
[84] Han C, Yang W, Lan Y, et al. Al addition on the short and medium range order of CuZrAl metallic glasses[J]. Physica B: Condensed Matter, 2021, 619: 413237.
[85] Miracle D B. A structural model for metallic glasses[J]. Nature Materials, 2004, 3(10): 697–702.
[86] Cheng Y Q, Ma E. Atomic-level structure and structure–property relationship in metallic glasses[J]. Progress in Materials Science, 2011, 56(4): 379–473.
[87] Nelson D R. Order, frustration, and defects in liquids and glasses[J]. Physical Review B, 1983, 28(10): 5515.
[88] Fujita T, Konno K, Zhang W, et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability[J]. Physical Review Letters, 2009, 103(7): 075502.
[89] Gaskell P H. A new structural model for transition metal–metalloid glasses[J]. Nature, 1978, 276(5687): 484–485.
[90] Gaskell P H. Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data[J]. Journal of Non-Crystalline Solids, 2005, 351(12– 13): 1003–1013.
[91] Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-mediumrange order in metallic glasses[J]. Nature, 2006, 439(7075): 419–425.
[92] Stillinger F H. A Topographic View of Supercooled Liquids and Glass Formation[J]. Science, 1995, 267(5206): 1935–1939.
[93] Drehman A J, Greer A L, Turnbull D. Bulk formation of a metallic glass: Pd40Ni40P20[J]. Applied Physics Letters, 1998, 41(8): 716.
[94] Lee D, Zhao B, Perim E, et al. Crystallization behavior upon heating and cooling in Cu50Zr50 metallic glass thin films[J]. Acta Materialia, 2016, 121: 68–77.
[95] Wu M, Tse J S, Wang S Y, et al. Origin of pressure-induced crystallization of Ce75Al25 metallic glass[J]. Nature Communications, 2015, 6(1): 1–7.
[96] Wang Z X, Zhao D Q, Pan M X, et al. Formation and crystallization of CuZrHfTi bulk metallic glass under ambient andhigh pressures[J]. Journal of Physics: Condensed Matter, 2003, 15(35): 5923.
[97] Jinschek J R. Achieve atomic resolution in in situ S/TEM experiments to examine complex interface structures in nanomaterials[J]. Current Opinion in Solid State and Materials Science, 2017, 21(2): 77–91.
[98] Zhang B, Sheng Su D, Zhang B, et al. Transmission Electron Microscopy and the Science of Carbon Nanomaterials[J]. Small, 2014, 10(2): 222–229.
[99] Spurgeon S R, Ophus C, Jones L, et al. Towards data-driven next-generation transmission electron microscopy[J]. Nature Materials, 2020, 20(3): 274–279.
[100] Song Z, Xie Z H. A literature review of in situ transmission electron microscopy technique in corrosion studies[J]. Micron, 2018, 112: 69–83.
[101] Findlay S D, Huang R, Ishikawa R, et al. Direct visualization of lithium via annular bright field scanning transmission electron microscopy: a review[J]. Microscopy, 2017, 66(1): 3–14.
[102] Xie L, He D, He J. SnSe, the rising star thermoelectric material: a new paradigm in atomic blocks, building intriguing physical properties[J]. Materials Horizons, 2021, 8(7): 1847–1865.
[103] Wu H, Zheng F, Wu D, et al. Advanced electron microscopy for thermoelectric materials[J]. Nano Energy, 2015, 13: 626–650.
[104] Chang C, Wu M, He D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360(6390): 778–783.
[105] Fu L, Yin M, Wu D, et al. Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects[J]. Energy & Environmental Science, 2017, 10(9): 2030–2040.
[106] Xie L, Wu D, Yang H, et al. Direct atomic-scale observation of the Ag+ diffusion structure in the quasi-2D “liquid-like” state of superionic thermoelectric AgCrSe2[J]. Journal of Materials Chemistry C, 2019, 7(30): 9263–9269.
[107] Xu X, Xie L, Lou Q, et al. Boosting the Thermoelectric Performance of PseudoLayered Sb2Te3(GeTe)n via Vacancy Engineering[J]. Advanced Science, 2018, 5(12): 1801514.
[108] Carlton C E, Ferreira P J. In situ TEM nanoindentation of nanoparticles[J]. Micron, 2012, 43(11): 1134–1139.
[109] Oviedo J P, Kc S, Lu N, et al. In situ TEM characterization of shear-stressinduced interlayer sliding in the cross section view of molybdenum disulfide[J]. ACS Nano, 2015, 9(2): 1543–1551.
[110] Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010): 1515–1520.
[111] Wang Z, Santhanagopalan D, Zhang W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760–3767.
[112] Jinschek J R, Helveg S. Image resolution and sensitivity in an environmental transmission electron microscope[J]. Micron, 2012, 43(11): 1156–1168.
[113] Williams D B, Carter C B. Transmission Electron Microscopy: A Textbook for Materials Science[M]. New York: Springer.
[114] KRUMEICH F. Introduction Into Transmission and Scanning Transmission Electron Microscopy[EB/OL]. : 55(2022). https://www.microscopy.ethz.ch/.
[115] Mu X, Wang D, Feng T, et al. Radial distribution function imaging by STEM diffraction: Phase mapping and analysis of heterogeneous nanostructured glasses[J]. Ultramicroscopy, 2016, 168: 1–6.
[116] Bodapati A, Treacy M M J, Falk M, et al. Medium range order and the radial distribution function[J]. Journal of Non-Crystalline Solids, 2006, 352(2): 116– 122.
[117] Tran D T, Svensson G, Tai C W. SUePDF: a program to obtain quantitative pair distribution functions from electron diffraction data[J]. Journal of Applied Crystallography, 2017, 50(1): 304–312.
[118] Srolovitz D, Egami T, Vitek V. Radial distribution function and structural relaxation in amorphous solids[J]. Physical Review B, 1981, 24(12): 6936.
[119] Bogle S N, Nittala L N, Twesten R D, et al. Size analysis of nanoscale order in amorphous materials by variable-resolution fluctuation electron microscopy[J]. Ultramicroscopy, 2010, 110(10): 1273–1278.
[120] Daulton T L, Bondi K S, Kelton K F. Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials— Application to Al88−xY7Fe5Tix metallic glasses[J]. Ultramicroscopy, 2010, 110(10): 1279–1289.
[121] Kennedy E, Reynolds N, Rangel Dacosta L, et al. Tilted fluctuation electron microscopy[J]. Applied Physics Letters, 2020, 117(9): 091903.
[122] Li T T, Darmawikarta K, Abelson J R. Quantifying nanoscale order in amorphous materials via scattering covariance in fluctuation electron microscopy[J]. Ultramicroscopy, 2013, 133: 95–100.
[123] Treacy M M J, Gibson J M, Fan L, et al. Fluctuation microscopy: A probe of medium range order[J]. Reports on Progress in Physics, 2005, 68(12): 2899– 2944.
[124] Mitchell D R G, Petersen T C. RDFTools: A software tool for quantifying short-range ordering in amorphous materials[J]. Microscopy Research and Technique, 2012, 75(2): 153–163.
[125] Lee B-S, Bishop S G, Abelson J R. Fluctuation Transmission Electron Microscopy: Detecting Nanoscale Order in Disordered Structures[J]. ChemPhysChem, 2010, 11(11): 2311–2317.
[126] Wang Q, Liu C T, Yang Y, et al. Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass[J]. Physical Review Letters, 2011, 106(21): 215505.
[127] Fan G Y, Cowley J M. Auto-correlation analysis of high resolution electron micrographs of near-amorphous thin films[J]. Ultramicroscopy, 1985, 17(4): 345–355.
[128] Li Y H, Zhang W, Dong C, et al. Unusual compressive plasticity of a centimeter-diameter Zr-based bulk metallic glass with high Zr content[J]. Journal of Alloys and Compounds, 2010, 504(SUPPL. 1): S2–S5.
[129] SJ Pennycook P N. Scanning Transmission Electron Microscopy: Imaging and Analysis[M]. Springer Science & Business Media.
[130] Pennycook S J, Boatner L A. Chemically sensitive structure-imaging with a scanning transmission electron microscope[J]. Nature, 1988, 336(6199): 565– 567.
[131] Krivanek O L, Chisholm M F, Nicolosi V, et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy[J]. Nature, 2010, 464(7288): 571–574.
[132] Idrissi H, Ghidelli M, Béché A, et al. Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films[J]. Scientific Reports, 2019, 9(1): 1–11.
[133] Sarkar R, Ebner C, Izadi E, et al. Revealing anelasticity and structural rearrangements in nanoscale metallic glass films using in situ TEM diffraction[J]. Materials Research Letters, 2017, 5(3): 135–143.
[134] Ebner C, Sarkar R, Rajagopalan J, et al. Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction[J]. Ultramicroscopy, 2016, 165: 51–58.
[135] Gammer C, Ophus C, Pekin T C, et al. Local nanoscale strain mapping of a metallic glass during in situ testing[J]. Applied Physics Letters, 2018, 112(17): 171905.
[136] Ito Y, Alamgir P M, Jain H, et al. EXELFS of metallic glasses[J]. Materials Research Society Symposium - Proceedings, 1999, 554(November): 31–36.
[137] Diociaiuti M, Picozzi P, Santucci S, et al. Extended electron energy‐loss fine structure and selected‐area electron diffraction studies of small palladium clusters[J]. Journal of Microscopy, 1992, 166(2): 231–245.
[138] Zhu Y, Zhao H, He Y, et al. In-situ transmission electron microscopy for probing the dynamic processes in materials[J]. Journal of Physics D: Applied Physics, 2021, 54(44): 443002.
[139] Mele L, Konings S, Dona P, et al. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes[J]. Microscopy Research and Technique, 2016, 79(4): 239–250.
[140]Egerton R F, Li P, Malac M. Radiation damage in the TEM and SEM[J]. Micron, 2004, 35(6): 399–409.
[141] Peng L, Zhang Y, Zuo S, et al. Lorentz transmission electron microscopy studies on topological magnetic domains[J]. Chinese Physics B, 2018, 27(6): 066802.
[142] Phatak C, Petford-Long A K, De Graef M. Recent advances in Lorentz microscopy[J]. Current Opinion in Solid State and Materials Science, 2016, 20(2): 107–114.
[143] Tang J, Kong L, Wang W, et al. Lorentz transmission electron microscopy for magnetic skyrmions imaging[J]. Chinese Physics B, 2019, 28(8): 087503.
[144] Shindo D, Tanigaki T, Park H S. Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science[J]. Advanced Materials, 2017, 29(25): 1602216.
[145] Midgley P A, Dunin-Borkowski R E. Electron tomography and holography in materials science[J]. Nature Materials, 2009, 8(4): 271–280.
[146] Jiang Y, Chen Z, Han Y, et al. Electron ptychography of 2D materials to deep sub-ångström resolution[J]. Nature, 2018, 559(7714): 343–349.
[147] Ophus C. Four-Dimensional Scanning Transmission Electron Microscopy (4DSTEM): From Scanning Nanodiffraction to Ptychography and Beyond[J]. Microscopy and Microanalysis, 2019(2019): 563–582.
[148] Bosch E G T, Lazić I. Analysis of HR-STEM theory for thin specimen[J]. Ultramicroscopy, 2015, 156: 59–72.
[149] Lazić I, Bosch E G T, Lazar S. Phase contrast STEM for thin samples: Integrated differential phase contrast[J]. Ultramicroscopy, 2016, 160: 265–280.
[150] Midgley P A, Weyland M, Meurig Thomas J, et al. Z-Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering[J]. Chemical Communications, 2001, 0(10): 907–908.
[151] Hanwell M D, Harris C J, Genova A, et al. Tomviz: Open Source Platform Connecting Image Processing Pipelines to GPU Accelerated 3D Visualization[J]. Microscopy and Microanalysis, 2019, 25(S2): 408–409.
[152] Kremer J R, Mastronarde D N, McIntosh J R. Computer Visualization of ThreeDimensional Image Data Using IMOD[J]. Journal of Structural Biology, 1996, 116(1): 71–76.
[153] Yuan Y, Kim D S, Zhou J, et al. Three-dimensional atomic packing in amorphous solids with liquid-like structure[J]. Nature Materials, 2021, 21(1): 95–102.
[154] Yang Y, Zhou J, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid[J]. Nature, 2021, 592(7852): 60–64.
[155] Miao J, Ercius P, Billinge S J L. Atomic electron tomography: 3D structures without crystals[J]. Science, 2016, 353(6306): aaf2157.
[156] Suslick K S, Choe S B, Cichowlas A A, et al. Sonochemical synthesis of amorphous iron[J]. Nature, 1991, 353(6343): 414–416.
[157] Rojo J M, Hernando A, El Ghannami M, et al. Observation and Characterization of Ferromagnetic Amorphous Nickel[J]. Physical Review Letters, 1996, 76(25): 4833.
[158] Zhang J, Zhao Y. Formation of zirconium metallic glass[J]. Nature, 2004, 430(6997): 332–335.
[159] Wang Y, Fang Y Z, Kikegawa T, et al. Amorphouslike diffraction pattern in solid metallic titanium[J]. Physical Review Letters, 2005, 95(15): 155501.
[160] Bhat M H, Molinero V, Soignard E, et al. Vitrification of a monatomic metallic liquid[J]. Nature, 2007, 448(7155): 787–790.
[161] Cheng H, Yang N, Liu G, et al. Ligand-Exchange-Induced Amorphization of Pd Nanomaterials for Highly Efficient Electrocatalytic Hydrogen Evolution Reaction[J]. Advanced Materials, 2020, 32(11): 1902964.
[162] Wu G, Zheng X, Cui P, et al. A general synthesis approach for amorphous noble metal nanosheets[J]. Nature Communications, 2019, 10(1): 1–8.
[163] Zhong L, Wang J, Sheng H, et al. Formation of monatomic metallic glasses through ultrafast liquid quenching[J]. Nature, 2014, 512(7513): 177–180.
[164] Obi T, Ochiai Y, Tsuruoka Y, et al. Amorphization of pure noble metal nanocontacts by nanosecond electrical energization[J]. Journal of Physics and Chemistry of Solids, 2022, 162: 110498.
[165] Tang D-M, Ren C-L, Lv R, et al. Amorphization and Directional Crystallization of Metals Confined in Carbon Nanotubes Investigated by in Situ Transmission Electron Microscopy[J]. Nano Letters, 2015, 15(8): 4922–4927.
[166] Hirata A, Guan P, Fujita T, et al. Direct observation of local atomic order in a metallic glass[J]. Nature Materials, 2010, 10(1): 28–33.
[167] Hirata A, Kang L J, Fujita T, et al. Geometric frustration of icosahedron in metallic glasses[J]. Science, 2013, 341(6144): 376–379.
[168] Zhu F, Hirata A, Liu P, et al. Correlation between Local Structure Order and Spatial Heterogeneity in a Metallic Glass[J]. Physical Review Letters, 2017, 119(21): 215501.
[169] Liu A C Y, Neish M J, Stokol G, et al. Systematic Mapping of Icosahedral Short-Range Order in a Melt-Spun Zr36Cu64 Metallic Glass[J]. Physical Review Letters, 2013, 110(20): 205505.
[170] Pekin T C, Ding J, Gammer C, et al. Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass[J]. Nature Communications, 2019, 10(1): 1–7.
[171] Im S, Chen Z, Johnson J M, et al. Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy[J]. Ultramicroscopy, 2018, 195: 189–193.
[172] Cao C R, Huang K Q, Shi J A, et al. Liquid-like behaviours of metallic glassy nanoparticles at room temperature[J]. Nature Communications, 2019, 10(1): 1– 8.
[173] Tian Y, Jiao W, Liu P, et al. Fast coalescence of metallic glass nanoparticles[J]. Nature Communications, 2019, 10(1): 1–8.
[174] He L, Zhang P, Besser M F, et al. Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid[J]. Microscopy and Microanalysis, 2015, 21(4): 1026–1033.
[175] Zhang P, Maldonis J J, Liu Z, et al. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy[J]. Nature Communications, 2018, 9(1): 1–7.
[176] Chen Z G, Hana G, Yanga L, et al. Nanostructured thermoelectric materials: Current research and future challenge[J]. Progress in Natural Science: Materials International, 2012, 22(6): 535–549.
[177] Suryanarayana C, Inoue A. Bulk metallic glasses: Second edition[M]. Bulk Metallic Glasses: Second Edition, CRC Press, 2017.
[178] Heck P R, Stadermann F J, Isheim D, et al. Atom-probe analyses of nanodiamonds from Allende[J]. Meteoritics & Planetary Science, 2014, 49(3): 453–467.
[179] Back J M, McCue S W, Moroney T J. Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles[J]. Scientific Reports, 2014, 4(1): 1–8.
[180] Schülli T U, Daudin R, Renaud G, et al. Substrate-enhanced supercooling in AuSi eutectic droplets[J]. Nature, 2010, 464(7292): 1174–1177.
[181] Chen L, Cao C R, Shi J A, et al. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth[J]. Physical Review Letters, 2017, 118(1): 016101.
[182] Sohn S, Xie Y, Jung Y, et al. Tailoring crystallization phases in metallic glass nanorods via nucleus starvation[J]. Nature Communications, 2017, 8(1): 1–8.
[183] Sohn S, Jung Y, Xie Y, et al. Nanoscale size effects in crystallization of metallic glass nanorods[J]. Nature Communications, 2015, 6(1): 1–6.
[184] Yinnon H, Uhlmann D R. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: Theory[J]. Journal of Non-Crystalline Solids, 1983, 54(3): 253–275.
[185] Avrami M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III[J]. The Journal of Chemical Physics, 2004, 9(2): 177.
[186] Jimenez C M, Lowe L F, Burke E A, et al. Radiation Damage in Pd Produced by 1-3-MeV Electrons[J]. Physical Review, 1967, 153(3): 735.
[187] Iijima S, Ichihashi T. Structural Instability of Ultrafine Particles of Metals[J]. Physical Review Letters, 1986, 56(6): 616–619.
[188] Kim B J, Tersoff J, Kodambaka S, et al. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth[J]. Science, 2008, 322(5904): 1070–1073.
[189] Kodambaka S, Tersoff J, Reuter M C, et al. Germanium nanowire growth below the eutectic temperature[J]. Science, 2007, 316(5825): 729–732.
[190] Oh S H, Chisholm M F, Kauffmann Y, et al. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires[J]. Science, 2010, 330(6003): 489–493.
[191] Fan Z, Maurice J L, Florea I, et al. In situ observation of droplet nanofluidics for yielding low-dimensional nanomaterials[J]. Applied Surface Science, 2022, 573: 151510.
[192] Curiotto S, Leroy F, Cheynis F, et al. In-Plane Si Nanowire Growth Mechanism in Absence of External Si Flux[J]. Nano Letters, 2015, 15(7): 4788–4792.
[193] Yu L, Alet P J, Picardi G, et al. An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires[J]. Physical Review Letters, 2009, 102(12): 125501.
[194] Sinclair R, Konno T J. In situ HREM: application to metal-mediated crystallization[J]. Ultramicroscopy, 1994, 56(1–3): 225–232.
[195] Wagner R S, Ellis W C. Vapor-Liquid-Solid mechanism of single srystal growth[J]. Applied Physics Letters, 1964, 4(5): 89.
[196] Panciera F, Tersoff J, Gamalski A D, et al. Surface Crystallization of Liquid Au–Si and Its Impact on Catalysis[J]. Advanced Materials, 2019, 31(5): 1806544.
[197] Panciera F, Chou Y C, Reuter M C, et al. Synthesis of nanostructures in nanowires using sequential catalyst reactions[J]. Nature Materials, 2015, 14(8): 820–825.
[198] Riley F L. Silicon Nitride and Related Materials[J]. Journal of the American Ceramic Society, 2000, 83(2): 245–265.
[199] Klemm H. Silicon Nitride for High-Temperature Applications[J]. Journal of the American Ceramic Society, 2010, 93(6): 1501–1522.
[200] Ding Y, Fan F, Tian Z, et al. Atomic structure of Au-Pd bimetallic alloyed nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(35): 12480–12486.
[201] Okamoto H, Massalski T B. The Au−Si (Gold-Silicon) system[J]. Bulletin of Alloy Phase Diagrams 1983 4:2, 1983, 4(2): 190–198.
[202] Graham T. On the absorption and dialytic separation of gases by colloid septa[J]. Journal of the Franklin Institute, 1867, 83(1): 39–41.
[203] Baldi A, Narayan T C, Koh A L, et al. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals[J]. Nature Materials, 2014, 13(12): 1143–1148.
[204] Bennett P A, Fuggle J C. Electronic structure and surface kinetics of palladium hydride studied with x-ray photoelectron spectroscopy and electron-energy - 105 - loss spectroscopy[J]. Physical Review B, 1982, 26(11): 6030.
[205] Silkin V M, Muino R D, Chernov I, et al. Tuning the plasmon energy of palladium-hydrogen systems by varying the hydrogen concentration[J]. Journal of Physics: Condensed Matter, 2012, 24: 1–5.
[206] Jia N, Cao J, Tan X Y, et al. Thermoelectric materials and transport physics[J]. Materials Today Physics, 2021, 21: 100519.
[207] Wang Y, Lin P, Lou Q, et al. Design guidelines for chalcogenide-based flexible thermoelectric materials[J]. Materials Advances, 2021, 2(8): 2584–2593.
[208] Guo F, Cui B, Liu Y, et al. Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self-Compensation and Mn Alloying[J]. Small, 2018, 14(37): 1802615.
[209] Pang H, Qiu Y, Wang D, et al. Realizing N-type SnTe Thermoelectrics with Competitive Performance through Suppressing Sn Vacancies[J]. Journal of the American Chemical Society, 2021, 143(23): 8538–8542.
[210] Chang C, Wang D, He D, et al. Realizing High-Ranged Out-of-Plane ZTs in NType SnSe Crystals through Promoting Continuous Phase Transition[J]. Advanced Energy Materials, 2019, 9(28): 1901334.
[211] Tan G, Shi F, Hao S, et al. Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe[J]. Journal of the American Chemical Society, 2015, 137(35): 11507–11516.
[212] Vatanparast M, Shao Y-T, Rajpalke M, et al. Detecting minute amounts of nitrogen in GaNAs thin films using STEM and CBED[J]. Ultramicroscopy, 2021: 113299.
[213] Jiang B, Yu Y, Cui J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance[J]. Science, 2021, 371(6531): 830–834.
[214] Nüchter W, Sigle W. Electron channelling: A method in real-space crystallography and a comparison with the atomic location by channellingenhanced microanalysis[J]. Philosophical Magazine A, 1995, 71(1): 165–186.
[215] Morimura T, Hasaka M. Electron channeling X-ray microanalysis for site occupation in β-FeSi2 doped with Co[J]. Materials Characterization, 2004, 52(1): 35–41.
[216] Spence J C H, Taftø J. ALCHEMI: a new technique for locating atoms in small crystals[J]. Journal of Microscopy, 1983, 130(2): 147–154.
[217] Fultz B, Howe J M. Transmission Electron Microscopy and Diffractometry of Materials[M]. Springer Science & Business Media, 2012.
[218] Muto S, Ohtsuka M. High-precision quantitative atomic-site-analysis of functional dopants in crystalline materials by electron-channelling-enhanced microanalysis[J]. Progress in Crystal Growth and Characterization of Materials, 2017, 63(2): 40–61.
[219] Oxley M P, Allen L J. ICSC: A program for calculating inelastic scattering cross sections for fast electrons incident on crystals[J]. Journal of Applied Crystallography, 2003, 36(3 II): 940–943.
修改评论