中文版 | English
题名

Scanning Tunneling Microscopy Study on Superlattice Topological Materials

姓名
姓名拼音
ZHANG Yu
学号
11750015
学位类型
博士
学位专业
Physics
导师
赵悦
导师单位
物理系
外机构导师
谢茂海
外机构导师单位
香港大学
论文答辩日期
2022-06-17
论文提交日期
2022-10-25
学位授予单位
香港大学
学位授予地点
香港
摘要

Superlattice materials are crystals with periodic repeating patterns of two or more different crystal components or periodic potential modifications in a more general definition. In this thesis, we use scanning tunneling microscopy to study two kinds of superlattice topological materials. The first one is the superlattice stacked layer by layer through van der Waals interactions, such as intrinsic magnetic topological insulators MnBi4Te7, and MnBi8Te13. The second one is the superlattice in the two-dimensional plane, such as twisted monolayer-bilayer graphene with a moiré pattern.

MnBi4Te7 and MnBi8Te13 are layered van der Waals superlattices, consisting of MnBi2Te4 septuple-layer (SL) and Bi2Te3 quintuple-layer (QL) of stack ratio 1:1 and 1:3 respectively. MnBi2Te4 is an intrinsic A-type antiferromagnetic topological insulator, which exhibits novel topological phases including the axion insulator and Chern insulator phase. The antiferromagnetic interlayer coupling of MnBi2Te4 can be weakened by inserting Bi2Te3 layers between adjacent MnBi2Te4 layers. In our scanning tunneling microscopy study of antiferromagnetic topological insulator MnBi4Te7, we distinguish the distinct surface states of the two terminations of MnBi4Te7. With the assistance of angular-resolved photoemission spectroscopy and theoretical calculation, we identify the hybridization gap on the QL termination surface state and the nearly gapless Dirac cone on the SL termination. By analyzing the quasiparticle interference on the two terminations, we confirm that there exists a helical surface state with hexagonal warping on QL terminations and a strongly canted helical surface state on SL terminations sitting between the Rashba-like splitting state from their neighboring QLs.

MnBi8Te13 has a weak ferromagnetic interlayer coupling. Its long-range ferromagnetic order can open a gap in the topological surface states. In the scanning tunneling spectroscopy study of MnBi8Te13, we observe peaks of local density of states (LDOS) at the Dirac point near the exposed edge of SL terminations. The peaks indicate the existence of edge states. Such peaks disappear as we elevate the temperature above the Curie point where the ferromagnetic order vanishes. The temperature response further confirms the edge state is related to the broken time-reversal symmetry by magnetic moment. No such edge state is observed on the other non-magnetic termination of QL1.

Twisted graphene generates moiré patterns due to the misorientation of the two crystal layers. Such moiré modulation can greatly affect the band structure. By stacking two monolayer graphenes with a magic twist angle, the van Hove singularities, formed by the intersection of Dirac cones, merge into a flat band with strong electron-electron interaction. Magic-angle (~1.1-degree) twisted bilayer graphene hosts novel physics properties including superconductivity, insulating states induced by strong electronelectron interaction, nematicity, and so on. If the twist occurs between a monolayer and bilayer graphene, the crystal symmetry is even lower, with broken C2 and mirror symmetry. In our experiment, We study the magic-angle twisted monolayer-bilayer graphene device using gate-tuning scanning tunneling microscopy. We observe the flat band splits as it crosses the Fermi level at ABB sites, which is possibly due to correlated interaction.

关键词
语种
英语
培养类别
联合培养
入学年份
2017
学位授予年份
2022-12
参考文献列表

[1] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel. “Surface Studies by Scanning Tunneling Microscopy”. In: Phys. Rev. Lett. 49 (1 July 1982), pp. 57–61. DOI: 10.1103 / PhysRevLett . 49 . 57. URL: https : / / link . aps . org / doi / 10 . 1103 / PhysRevLett.49.57.
[2] K. D. Brommer, M. Needels, B. Larson, and J. D. Joannopoulos. “Ab initio theory of the Si(111)-(7×7) surface reconstruction: A challenge for massively parallel computation”. In: Phys. Rev. Lett. 68 (9 Mar. 1992), pp. 1355–1358. DOI: 10 . 1103 / PhysRevLett . 68 . 1355. URL: https : / / link . aps . org / doi / 10 . 1103 / PhysRevLett.68.1355.
[3] S. H. Pan, E. W. Hudson, and J. C. Davis. “3He refrigerator based very low temperature scanning tunneling microscope”. In: Review of Scientific Instruments 70.2 (1999), pp. 1459–1463. DOI: 10.1063/1.1149605. eprint: https://doi.org/10.1063/1.1149605. URL: https://doi.org/10.1063/1.1149605.
[4] J. Bardeen. “Tunnelling from a many-particle point of view”. In: Physical review letters 6.2 (1961), p. 57.
[5] J. Tersoff and D. R. Hamann. “Theory of the scanning tunneling microscope”. In: Physical Review B 31.2 (1985), p. 805.
[6] C. Cosens. “A balance-detector for alternating-current bridges”. In: Proceedings of the Physical Society (1926-1948) 46.6 (1934), p. 818.
[7] W. C. Michels and N. L. Curtis. “A pentode lock-in amplifier of high frequencyselectivity”. In: Review of Scientific Instruments 12.9 (1941), pp. 444–447.
[8] M. Crommie, C. P. Lutz, and D. Eigler. “Imaging standing waves in a two-dimensional electron gas”. In: Nature 363.6429 (1993), pp. 524–527.
[9] J. E. Hoffman, K. McElroy, D.-H. Lee, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis. “Imaging Quasiparticle Interference in Bi2Sr2CaCu2O8+”. In: Science 297.5584 (2002), pp. 1148–1151. URL: https://www.science.org/doi/abs/10.1126/science.1072640.
[10] K. v. Klitzing, G. Dorda, and M. Pepper. “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance”. In: Phys. Rev. Lett. 45 (6 Aug. 1980), pp. 494–497. DOI: 10.1103/PhysRevLett.45.494. URL: https://link.aps.org/doi/10.1103/PhysRevLett.45.494.
[11] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. “Quantized Hall Conductance in a Two-Dimensional Periodic Potential”. In: Phys. Rev. Lett. 49 (6 Aug. 1982), pp. 405–408. DOI: 10.1103/PhysRevLett.49.405. URL: https://link.aps.org/doi/10.1103/PhysRevLett.49.405.
[12] B. I. Halperin. “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential”. In: Phys. Rev. B 25 (4 Feb. 1982), pp. 2185–2190. DOI: 10.1103/PhysRevB.25.2185. URL: https://link.aps.org/doi/10.1103/PhysRevB.25.2185.
[13] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang. “Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells”. In: Science 314.5806 (2006), pp. 1757–1761. DOI: 10.1126/science.1133734. eprint: https://www.science.org/doi/pdf/10.1126/science.1133734. URL: https://www.science.org/doi/abs/10.1126/science.1133734.
[14] C. L. Kane and E. J. Mele. “Quantum Spin Hall Effect in Graphene”. In: Phys. Rev. Lett. 95 (22 Nov. 2005), p. 226801. DOI: 10.1103/PhysRevLett.95.226801. URL: https://link.aps.org/doi/10.1103/PhysRevLett.95.226801.
[15] C. L. Kane and E. J. Mele. “Z2 Topological Order and the Quantum Spin Hall Effect”. In: Phys. Rev. Lett. 95 (14 Sept. 2005), p. 146802. DOI: 10.1103/PhysRevLett. 95 . 146802. URL: https : / / link . aps . org / doi / 10 . 1103 / PhysRevLett . 95 . 146802.
[16] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang. “Quantum Spin Hall Insulator State in HgTe Quantum Wells”. In: Science 318.5851 (2007), pp. 766–770. ISSN: 0036-8075. DOI: 10.1126/ science.1148047.
[17] L. Fu, C. L. Kane, and E. J. Mele. “Topological Insulators in Three Dimensions”. In: Phys. Rev. Lett. 98 (10 Mar. 2007), p. 106803. DOI: 10.1103/PhysRevLett.98.106803. URL: https://link.aps.org/doi/10.1103/PhysRevLett.98.106803.
[18] J. E. Moore and L. Balents. “Topological invariants of time-reversal-invariant band structures”. In: Phys. Rev. B 75 (12 Mar. 2007), p. 121306. DOI: 10 . 1103 /PhysRevB.75.121306. URL: https://link.aps.org/doi/10.1103/PhysRevB.75.121306.
[19] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan. “Atopological Dirac insulator in a quantum spin Hall phase”. In: Nature 452.7190 (2008), pp. 970–974.
[20] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan. “Observation of Unconventional Quantum Spin Textures in Topological Insulators”. In: Science 323.5916 (2009), pp. 919–922. ISSN: 0036-8075. DOI: 10.1126/science.1167733.
[21] P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani. “Topological surface states protected from backscattering by chiral spin texture”. In: Nature 460.7259 (2009), pp. 1106–1109.
[22] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, et al. “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface”. In: Nature physics 5.6 (2009), pp. 398–402.
[23] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen. “Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3”. In: Science 325.5937 (2009), pp. 178–181. ISSN: 0036-8075. DOI: 10 . 1126 / science .1173034.
[24] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan. “Observation of Time-Reversal-Protected Single-Dirac-Cone Topological Insulator States in Bi2Te3 and Sb2Te3”. In: Phys. Rev. Lett. 103 (14 Sept. 2009), p. 146401. DOI: 10.1103/PhysRevLett.103.146401. URL: https://link.aps. org/doi/10.1103/PhysRevLett.103.146401.
[25] Y. Tokura, K. Yasuda, and A. Tsukazaki. “Magnetic topological insulators”. In: Nature Reviews Physics 1.2 (2019), pp. 126–143.
[26] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, et al. “Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator”. In: Science 340.6129 (2013), pp. 167–170.
[27] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang. “Quantized Anomalous Hall Effect in Magnetic Topological Insulators”. In: Science 329.5987 (2010), pp. 61–64. ISSN: 0036-8075. DOI: 10.1126/science.1187485.
[28] I. Lee, C. K. Kim, J. Lee, S. J. Billinge, R. Zhong, J. A. Schneeloch, T. Liu, T. Valla, J. M. Tranquada, G. Gu, et al. “Imaging Dirac-mass disorder from mag netic dopant atoms in the ferromagnetic topological insulator Crx (Bi0. 1Sb0. 9)2-xTe3”. In: Proceedings of the National Academy of Sciences 112.5 (2015), pp. 1316–1321.
[29] J. Li, Y. Li, S. Du, Z. Wang, B.-L. Gu, S.-C. Zhang, K. He, W. Duan, and Y. Xu. “Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4- family materials”. In: Science Advances 5.6 (2019). DOI: 10.1126/sciadv.aaw5685.
[30] M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. Wolter, A. Koroleva, A. M. Shikin, et al. “Prediction and obser vation of an antiferromagnetic topological insulator”. In: Nature 576.7787 (2019), pp. 416–422.
[31] Y.-J. Hao, P. Liu, Y. Feng, X.-M. Ma, E. F. Schwier, M. Arita, S. Kumar, C. Hu, R. Lu, M. Zeng, Y. Wang, Z. Hao, H.-Y. Sun, K. Zhang, J. Mei, N. Ni, L. Wu, K. Shimada, C. Chen, Q. Liu, and C. Liu. “Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4”. In: Phys. Rev. X 9 (4 Nov. 2019), p. 041038. DOI: 10.1103/PhysRevX.9.041038. URL: https://link.aps.org/doi/10.1103/PhysRevX.9.041038.
[32] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang. “Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4”. In: Science 367.6480 (2020), pp. 895–900. ISSN: 0036-8075. DOI: 10.1126/science. aax8156.
[33] R. Lu, H. Sun, S. Kumar, Y. Wang, M. Gu, M. Zeng, Y.-J. Hao, J. Li, J. Shao, X.-M. Ma, Z. Hao, K. Zhang, W. Mansuer, J. Mei, Y. Zhao, C. Liu, K. Deng, W. Huang, B. Shen, K. Shimada, E. F. Schwier, C. Liu, Q. Liu, and C. Chen. “Half-Magnetic Topological Insulator with Magnetization-Induced Dirac Gap at a Selected Sur face”. In: Phys. Rev. X 11 (1 Feb. 2021), p. 011039. DOI: 10.1103/PhysRevX.11. 011039. URL: https://link.aps.org/doi/10.1103/PhysRevX.11.011039.
[34] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. “Electric Field Effect in Atomically Thin Carbon Films”. In: Science 306.5696 (2004), pp. 666–669. ISSN: 0036-8075. DOI: 10.1126/science.1102896.
[35] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Pono marenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim. “Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Tem perature”. In: Nano Letters 11.6 (2011). PMID: 21574627, pp. 2396–2399. DOI: 10.1021/nl200758b.
[36] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim. “Experimental observation of the quantum Hall effect and Berry’s phase in graphene”. In: nature 438.7065 (2005), pp. 201–204.
[37] K. S. Novoselov, Z. Jiang, Y. Zhang, S. Morozov, H. L. Stormer, U. Zeitler, J. Maan, G. Boebinger, P. Kim, and A. K. Geim. “Room-temperature quantum Hall effect in graphene”. In: science 315.5817 (2007), pp. 1379–1379.
[38] K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim. “Observation of the fractional quantum Hall effect in graphene”. In: Nature 462.7270 (2009), pp. 196–199.
[39] L. Esaki and R. Tsu. “Superlattice and Negative Differential Conductivity in Semi conductors”. In: IBM Journal of Research and Development 14.1 (1970), pp. 61–65. DOI: 10.1147/rd.141.0061.
[40] L. Esaki and L. Chang. “New transport phenomenon in a semiconductor" Super lattice"”. In: Physical Review Letters 33.8 (1974), p. 495.
[41] G. Li, A. Luican, J. L. Dos Santos, A. C. Neto, A. Reina, J. Kong, and E. Andrei. “Observation of Van Hove singularities in twisted graphene layers”. In: Nature physics 6.2 (2010), pp. 109–113.
[42] R. V. Gorbachev, J. C. W. Song, G. L. Yu, A. V. Kretinin, F. Withers, Y. Cao, A. Mishchenko, I. V. Grigorieva, K. S. Novoselov, L. S. Levitov, and A. K. Geim. “Detecting topological currents in graphene superlattices”. In: Science 346.6208 (2014), pp. 448–451. ISSN: 0036-8075. DOI: 10 . 1126 / science . 1254966.
[43] C. Forsythe, X. Zhou, K. Watanabe, T. Taniguchi, A. Pasupathy, P. Moon, M. Koshino, P. Kim, and C. R. Dean. “Band structure engineering of 2D materials using patterned dielectric superlattices”. In: Nature nanotechnology 13.7 (2018), pp. 566–571.
[44] R. Bistritzer and A. H. MacDonald. “Moiré bands in twisted double-layer graphene”. In: Proceedings of the National Academy of Sciences 108.30 (2011), pp. 12233–12237. ISSN: 0027-8424. DOI: 10.1073/pnas.1108174108.
[45] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo Herrero. “Unconventional superconductivity in magic-angle graphene superlat tices”. In: Nature 556.7699 (2018), pp. 43–50.
[46] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, et al. “Correlated insulator be haviour at half-filling in magic-angle graphene superlattices”. In: Nature 556.7699 (2018), pp. 80–84.
[47] Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watanabe, T. Taniguchi, B. A. Bernevig, and A. Yazdani. “Spectroscopic signatures of many-body correlations in magicangle twisted bilayer graphene”. In: Nature 572.7767 (2019), pp. 101–105.
[48] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, et al. “Maximized electron interactions at the magic angle in twisted bilayer graphene”. In: Nature 572.7767 (2019), pp. 95–100.
[49] C. Liu, Y. Wang, H. Li, Y. Wu, Y. Li, J. Li, K. He, Y. Xu, J. Zhang, and Y. Wang. “Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator”. In: Nature materials 19.5 (2020), pp. 522–527.
[50] M. Otrokov, M. Garnica, P. Casado Aguilar, I. Klimovskikh, D. Estyunin, Z. Aliev, I. Amiraslanov, N. Abdullayev, V. Zverev, M. Babanly, et al. “Native point defects and their implications for the Dirac point gap at MnBi 2 Te 4 (0001)”. In: Bulletin of the American Physical Society (2022).

[51] H. Li, S.-Y. Gao, S.-F. Duan, Y.-F. Xu, K.-J. Zhu, S.-J. Tian, J.-C. Gao, W.-H. Fan, Z.-C. Rao, J.-R. Huang, et al. “Dirac surface states in intrinsic magnetic topological insulators EuSn 2 As 2 and MnBi 2 n Te 3 n+ 1”. In: Physical Review X 9.4 (2019), p. 041039.

[52] Y. Chen, L. Xu, J. Li, Y. Li, H. Wang, C. Zhang, H. Li, Y. Wu, A. Liang, C. Chen, et al. “Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi 2 Te 4”. In: Physical Review X 9.4 (2019), p. 041040.

[53] P. Swatek, Y. Wu, L.-L. Wang, K. Lee, B. Schrunk, J. Yan, and A. Kaminski. “Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi 2 Te4”. In: Physical Review B 101.16 (2020), p. 161109.

[54] Y. Liu, L.-L. Wang, Q. Zheng, Z. Huang, X. Wang, M. Chi, Y. Wu, B. C. Chakoumakos, M. A. McGuire, B. C. Sales, et al. “Site mixing for engineering magnetic topological insulators”. In: Physical Review X 11.2 (2021), p. 021033.

[55] F. Hou, Q. Yao, C.-S. Zhou, X.-M. Ma, M. Han, Y.-J. Hao, X. Wu, Y. Zhang, H. Sun, C. Liu, et al. “Te-vacancy-induced surface collapse and reconstruction in antiferromagnetic topological insulator MnBi2Te4”. In: ACS nano 14.9 (2020), pp. 11262–11272.

[56] J.-Q. Yan, Y. H. Liu, D. S. Parker, Y. Wu, A. A. Aczel, M. Matsuda, M. A. McGuire, and B. C. Sales. “A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals”. In: Phys. Rev. Materials 4 (5 May 2020), p. 054202. DOI: 10 . 1103 /PhysRevMaterials . 4 . 054202. URL: https : / / link . aps . org / doi / 10 . 1103 /PhysRevMaterials.4.054202.

[57] Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava. “Development of ferromagnetism in the doped topological insula tor Bi2−xMnxTe3”. In: Phys. Rev. B 81 (19 May 2010), p. 195203. DOI: 10.1103/PhysRevB.81.195203. URL: https://link.aps.org/doi/10.1103/PhysRevB.81.195203.

[58] H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov, Y. San Hor, R. J. Cava, and A. Yazdani. “Spatial fluctuations of helical Dirac fermions on the surface of topological insulators”. In: Nature Physics 7.12 (2011), pp. 939–943.

[59] S. Li, Z. Ye, X. Luo, G. Ye, H. H. Kim, B. Yang, S. Tian, C. Li, H. Lei, A. W. Tsen, et al. “Magnetic-field-induced quantum phase transitions in a van der Waals mag net”. In: Physical Review X 10.1 (2020), p. 011075.

[60] J. Hoffman, K. McElroy, D.-H. Lee, K. Lang, H. Eisaki, S. Uchida, and J. Davis. “Imaging quasiparticle interference in Bi2Sr2CaCu2O8+ δ”. In: Science 297.5584 (2002), pp. 1148–1151.

[61] M. Bahramy, P. King, A. De La Torre, J. Chang, M. Shi, L. Patthey, G. Balakrishnan, P. Hofmann, R. Arita, N. Nagaosa, et al. “Emergent quantum confinement at topological insulator surfaces”. In: Nature communications 3.1 (2012), pp. 1–7.

[62] S. Tian, S. Gao, S. Nie, Y. Qian, C. Gong, Y. Fu, H. Li, W. Fan, P. Zhang, T. Kondo, S. Shin, J. Adell, H. Fedderwitz, H. Ding, Z. Wang, T. Qian, and H. Lei. “Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states”. In: Phys. Rev. B 102 (3 July 2020), p. 035144. DOI: 10.1103/PhysRevB.102.035144. URL: https://link.aps.org/doi/10.1103/PhysRevB. 102.035144.

[63] C. Hu, L. Ding, K. N. Gordon, B. Ghosh, H.-J. Tien, H. Li, A. G. Linn, S.-W. Lien, C.-Y. Huang, S. Mackey, J. Liu, P. V. S. Reddy, B. Singh, A. Agarwal, A. Ban sil, M. Song, D. Li, S.-Y. Xu, H. Lin, H. Cao, T.-R. Chang, D. Dessau, and N. Ni. “Realization of an intrinsic ferromagnetic topological state in MnBi8Te13”. In: Science Advances 6.30 (2020). DOI: 10.1126/sciadv.aba4275.

[64] C. Hu, L. Ding, K. N. Gordon, B. Ghosh, H.-J. Tien, H. Li, A. G. Linn, S.-W. Lien, C.-Y. Huang, S. Mackey, et al. “Realization of an intrinsic ferromagnetic topolog ical state in MnBi8Te13”. In: Science advances 6.30 (2020), eaba4275.

[65] M. Gu, J. Li, H. Sun, Y. Zhao, C. Liu, J. Liu, H. Lu, and Q. Liu. “Spectral signatures of the surface anomalous Hall effect in magnetic axion insulators”. In: Nature communications 12.1 (2021), pp. 1–9.

[66] H. Polshyn, Y. Zhang, M. A. Kumar, T. Soejima, P. Ledwith, K. Watanabe, T. Taniguchi, A. Vishwanath, M. P. Zaletel, and A. F. Young. “Topological charge density waves at half-integer filling of a moiré superlattice”. In: Nature Physics (2021), pp. 1–6.

[67] S. Chen, M. He, Y.-H. Zhang, V. Hsieh, Z. Fei, K. Watanabe, T. Taniguchi, D. H. Cobden, X. Xu, C. R. Dean, et al. “Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene”. In: Nature Physics 17.3 (2021), pp. 374–380.

[68] K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H. C. Movva, S. Huang, S. Larentis, C. M. Corbet, T. Taniguchi, K. Watanabe, et al. “van der Waals heterostructures with high accuracy rotational alignment”. In: Nano letters 16.3 (2016), pp. 1989–1995.

[69] R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Pérez De Lara, P. Jarillo-Herrero, R. V. Gorbachev, and A. Castellanos-Gomez. “Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials”. In: Chem. Soc. Rev. 47 (1 2018), pp. 53–68. DOI: 10.1039/C7CS00556C. URL: http://dx.doi.org/10.1039/C7CS00556C.

[70] G. Li, A. Luican, and E. Y. Andrei. “Self-navigation of a scanning tunneling microscope tip toward a micron-sized graphene sample”. In: Review of Scientific Instruments 82.7 (2011), p. 073701.

[71] E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn. “High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface”. In: Proceedings of the National Academy of Sciences 104.22 (2007), pp. 9209–9212.

[72] K. Xu, P. Cao, and J. R. Heath. “Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene monolayers”. In: Nano letters 9.12 (2009), pp. 4446–4451.

[73] C. Zhang, T. Zhu, S. Kahn, S. Li, B. Yang, C. Herbig, X. Wu, H. Li, K. Watanabe, T. Taniguchi, et al. “Visualizing delocalized correlated electronic states in twisted double bilayer graphene”. In: Nature communications 12.1 (2021), pp. 1–8.

[74] C. Shen, Y. Chu, Q. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu, J. Tian, K. Watan abe, et al. “Correlated states in twisted double bilayer graphene”. In: Nature Physics 16.5 (2020), pp. 520–525.

[75] Z. Bi, N. F. Yuan, and L. Fu. “Designing flat bands by strain”. In: Physical Review B 100.3 (2019), p. 035448.

[76] N. N. Nam and M. Koshino. “Lattice relaxation and energy band modulation in twisted bilayer graphene”. In: Physical Review B 96.7 (2017), p. 075311.

[77] S. Zhang and J. Liu. “Spin polarized nematic order, quantum valley Hall states, and field tunable topological transitions in twisted multilayer graphene systems”. In: arXiv preprint arXiv:2101.04711 (2021).

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406642
专题理学院_物理系
推荐引用方式
GB/T 7714
Zhang Y. Scanning Tunneling Microscopy Study on Superlattice Topological Materials[D]. 香港. 香港大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11750015-张昱-物理系.pdf(24346KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张昱]的文章
百度学术
百度学术中相似的文章
[张昱]的文章
必应学术
必应学术中相似的文章
[张昱]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。