中文版 | English
题名

Model Compression by Iterative Pruning with Knowledge Distillation and Its Application to Speech Enhancement

作者
DOI
发表日期
2022
会议名称
Interspeech Conference
ISSN
2308-457X
EISSN
1990-9772
会议录名称
卷号
2022-September
页码
941-945
会议日期
SEP 18-22, 2022
会议地点
null,Incheon,SOUTH KOREA
出版地
C/O EMMANUELLE FOXONET, 4 RUE DES FAUVETTES, LIEU DIT LOUS TOURILS, BAIXAS, F-66390, FRANCE
出版者
摘要
Over the past decade, deep learning has demonstrated its effectiveness and keeps setting new records in a wide variety of tasks. However, good model performance usually leads to a huge amount of parameters and extremely high computational complexity which greatly limit the use cases of deep learning models, particularly in embedded systems. Therefore, model compression is getting more and more attention. In this paper, we propose a compression strategy based on iterative pruning and knowledge distillation. Specifically, in each iteration, we first utilize a pruning criterion to drop the weights which have less impact on performance. Then, the model before pruning is used as a teacher to fine-tune the student which is the model after pruning. After several iterations, we get the final compressed model. The proposed method is verified on gated convolutional recurrent network (GCRN) and long short-term memory (LSTM) for single channel speech enhancement tasks. Experimental results show that the proposed compression strategy can dramatically reduce the model size by 40x without significant performance degradation for GCRN.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Acoustics ; Audiology & Speech-Language Pathology ; Computer Science ; Engineering
WOS类目
Acoustics ; Audiology & Speech-Language Pathology ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000900724501024
Scopus记录号
2-s2.0-85140075848
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406914
专题工学院_电子与电气工程系
工学院_计算机科学与工程系
作者单位
1.Department of Computer Science,Inner Mongolia University,Canada
2.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,China
推荐引用方式
GB/T 7714
Wei,Zeyuan,Li,Hao,Zhang,Xueliang. Model Compression by Iterative Pruning with Knowledge Distillation and Its Application to Speech Enhancement[C]. C/O EMMANUELLE FOXONET, 4 RUE DES FAUVETTES, LIEU DIT LOUS TOURILS, BAIXAS, F-66390, FRANCE:ISCA-INT SPEECH COMMUNICATION ASSOC,2022:941-945.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wei,Zeyuan]的文章
[Li,Hao]的文章
[Zhang,Xueliang]的文章
百度学术
百度学术中相似的文章
[Wei,Zeyuan]的文章
[Li,Hao]的文章
[Zhang,Xueliang]的文章
必应学术
必应学术中相似的文章
[Wei,Zeyuan]的文章
[Li,Hao]的文章
[Zhang,Xueliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。