中文版 | English
题名

MBI-Net: A Non-Intrusive Multi-Branched Speech Intelligibility Prediction Model for Hearing Aids

作者
DOI
发表日期
2022
会议名称
Interspeech Conference
ISSN
2308-457X
EISSN
1990-9772
会议录名称
卷号
2022-September
页码
3944-3948
会议日期
SEP 18-22, 2022
会议地点
null,Incheon,SOUTH KOREA
出版地
C/O EMMANUELLE FOXONET, 4 RUE DES FAUVETTES, LIEU DIT LOUS TOURILS, BAIXAS, F-66390, FRANCE
出版者
摘要
Improving the user's hearing ability to understand speech in noisy environments is critical to the development of hearing aid (HA) devices. For this, it is important to derive a metric that can fairly predict speech intelligibility for HA users. A straightforward approach is to conduct a subjective listening test and use the test results as an evaluation metric. However, conducting large-scale listening tests is time-consuming and expensive. Therefore, several evaluation metrics were derived as surrogates for subjective listening test results. In this study, we propose a multi-branched speech intelligibility prediction model (MBI-Net), for predicting the subjective intelligibility scores of HA users. MBI-Net consists of two branches of models, with each branch consisting of a hearing loss model, a cross-domain feature extraction module, and a speech intelligibility prediction model, to process speech signals from one channel. The outputs of the two branches are fused through a linear layer to obtain predicted speech intelligibility scores. Experimental results confirm the effectiveness of MBI-Net, which produces higher prediction scores than the baseline system in Track 1 and Track 2 on the Clarity Prediction Challenge 2022 dataset.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Acoustics ; Audiology & Speech-Language Pathology ; Computer Science ; Engineering
WOS类目
Acoustics ; Audiology & Speech-Language Pathology ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000900724504024
Scopus记录号
2-s2.0-85140044400
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406919
专题南方科技大学
作者单位
1.National Taiwan University,Taiwan
2.Academia Sinica,
3.Southern University of Science and Technology of China,China
推荐引用方式
GB/T 7714
Zezario,Ryandhimas E.,Chen,Fei,Fuh,Chiou Shann,et al. MBI-Net: A Non-Intrusive Multi-Branched Speech Intelligibility Prediction Model for Hearing Aids[C]. C/O EMMANUELLE FOXONET, 4 RUE DES FAUVETTES, LIEU DIT LOUS TOURILS, BAIXAS, F-66390, FRANCE:ISCA-INT SPEECH COMMUNICATION ASSOC,2022:3944-3948.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zezario,Ryandhimas E.]的文章
[Chen,Fei]的文章
[Fuh,Chiou Shann]的文章
百度学术
百度学术中相似的文章
[Zezario,Ryandhimas E.]的文章
[Chen,Fei]的文章
[Fuh,Chiou Shann]的文章
必应学术
必应学术中相似的文章
[Zezario,Ryandhimas E.]的文章
[Chen,Fei]的文章
[Fuh,Chiou Shann]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。