中文版 | English
题名

铋系锰氧化物多铁薄膜的结构设计及性能研究

其他题名
THE RESEARCH ON STRUCTURAL DESIGN AND PERFORMANCE OF MULTIFERROIC BISMUTH-BASED MANGANESE OXIDE THIN FILMS
姓名
姓名拼音
Jincai
学号
11749244
学位类型
博士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
陈朗
导师单位
物理系
外机构导师单位
哈尔滨工业大学
论文答辩日期
2022-05-17
论文提交日期
2022-11-05
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

随着大数据与人工智能时代的来临,数据存量以指数型方式不断增长,实现更高速率、更高密度以及更低功耗的数据存储已经迫在眉睫。然而,当前主流的磁存储技术在存储密度以及写入效率等方面仍然较低。尽管铁电存储技术相对应地克服了以上缺陷,但其读取数据方式却具有破坏性。集合磁序和电序于一体的多铁性材料恰好为实现以上二者的兼容提供了独特的平台。作为研究最为广泛的环境友好型无铅多铁性材料,铋系多铁性钙钛矿氧化物薄膜材料在信息存储技术的应用领域展现出了诱人的前景。

本文围绕BiMnO3薄膜材料的多铁性与外部因素的关联性进行了相关实验设计。通过选择具有不同晶格常数的单晶衬底与BiMnO3产生不同晶格失配,实验验证了外延应力对BiMnO3薄膜多铁性的调控作用。利用水溶性牺牲层以释放衬底应力,实验获得了结构稳定的多铁性柔性自支撑BiMnO3薄膜。通过调整超晶格的周期厚度参数,实验在基于BiMnO3的超晶格体系中实现了较强铁电性和铁磁性的共存。具体而言,包括如下的研究:

在单相BiMnO3薄膜材料中,探究了外延应力对薄膜铁电性与铁磁性的调控作用。实验采用脉冲激光沉积技术在与BiMnO3具有不同晶格失配度的四种单晶衬底上生长了具有应变大小差异的高质量BiMnO3薄膜。研究结果表明,压缩应力提高了薄膜面外方向的结构不对称性,使BiMnO3薄膜产生更大的晶格四方性,从而更有效地增强了BiMnO3薄膜的铁电压电特性。与此同时,研究发现,BiMnO3薄膜的铁磁态对外延应力的敏感度较低。但通过提高Mn2+离子占比,改变薄膜Mn离子eg轨道电子占据,影响BiMnO3薄膜的磁交换行为,拉伸应力具有增大BiMnO3薄膜磁矫顽场的作用。因此,相较而言,压缩应力造成的晶格失配更有利于实现BiMnO3薄膜潜在的磁电耦合效应,这对于探索高性能多铁性材料的实现具有重要的指导意义。

通过选用晶格常数更小的LaAlO3单晶作为衬底,进一步探究了更大的压缩应力对BiMnO3薄膜的结构、压电以及磁学特性的影响。研究结果表明,-3.65%的晶格失配度使BiMnO3薄膜失去典型的钙钛矿结构,形成特殊的层状超晶胞结构。通过调节生长氧气分压,实验在基于同等化学计量比的BiMnO3材料中获得了具有两种不同Bi-O结构的超晶胞薄膜。两种不同结构的超晶胞薄膜都具有典型压电响应特性。由于两种超晶胞薄膜面外方向的Bi-O结构不同,导致其Mn离子间超交换作用不同,两种超晶胞薄膜具有饱和磁化强度的差异性。

基于拓宽材料的应用空间,探究了实现柔性自支撑结构对BiMnO3薄膜多铁性的影响。利用水溶性的Sr3Al2O6薄膜作为中间牺牲层,实验成功实现了BiMnO3薄膜从刚性单晶衬底的转移。研究结果表明,自支撑BiMnO3薄膜是具有稳定结构的高质量单晶薄膜。由于转移前后薄膜晶格稳定性高,自支撑BiMnO3薄膜的铁电压电性和强铁磁特性都呈现良好的保持性。此外,由于BiMnO3薄膜的铁电畴结构在外力作用下具有动态演变特性,自支撑BiMnO3薄膜呈现新奇的超柔性。

在基于BiMnO3薄膜的复合材料中,探究了超晶格周期参数对BiFeO3/BiMnO3超晶格多铁性的调控作用。实验利用采用脉冲激光沉积技术制备了纯相且界面结构清晰的系列高质量BiFeO3/BiMnO3超晶格。通过调整超晶格周期厚度参数,实验发现较厚BiFeO3层的强铁电极化场有利于诱导BiMnO3层产生强极化,从而增强超晶格的铁电性。与此同时,反铁磁性BiFeO3层的引入使超晶格界面处产生了Fe-O-Mn的反铁磁超交换作用,极大地削弱了来自BiMnO3层的净磁矩,造成BiFeO3/BiMnO3超晶格呈现弱铁磁性。通过调整其中BiMnO3层周期厚度,实验有效地调控了超晶格中Fe-O-Mn的反铁磁超交换耦合作用强度,从而在BiFeO3/BiMnO3超晶格体系中实现了较强铁电态与铁磁态的共存。

其他摘要

With the advent of the era of big data and artificial intelligence, the exponential growth of data has put forward higher demands on storage technology. The realization of higher speed, higher density and lower power consumption in data storage is imminent. However, the storage density and writing efficiency of current mainstream magnetic storage are still low. Although ferroelectric storage overcomes the above defects correspondingly, they are limited by the need for a destructive read and reset operation. Multiferroic materials, which show ferromagnetism and ferroelectricity simultaneously, provide a unique platform for realizing the compatibility of the two. As the most widely studied lead-free multiferroic materials, bismuth-based multiferroic perovskite oxide thin films show attractive prospects of the applications of storage technology.

In this thesis, the correlations between the multiferroic properties and external factors such as strain, special freestanding structure and superlattice interface of multiferroic BiMnO3 thin films are studied. Firstly, by adjusting the lattice mismatch of films and substrates, the multiferroicity of single-phase BiMnO3 thin films is tuned. Then, the flexible freestanding BiMnO3 membranes with stable structure and multiferroic properties are prepared using water-soluble sacrificial layer to release the strains of the substrate. Finally, by tunning the periodic thickness parameters, the coexistence of strong ferroelectricity and ferromagnetism have realized in BiMnO3-based superlattice systems. Our researches mainly include the following three parts:

Single-phase BiMnO3 thin films with different epitaxial strains are designed to tune their ferroelectric and ferromagnetic properties. High-quality BiMnO3 thin films with different epitaxial strains were fabricated using pulsed laser deposition by selecting different single crystal substrates. Through improving the structural asymmetry in the out-of-plane direction of the films, compressive strains produce larger lattices tetragonality in BiMnO3 films, which effectively enhance the ferroelectric properties of the films. Meanwhile, it is found that the ferromagnetic state of BiMnO3 films is less sensitive to the epitaxial strains. By increasing the proportion of Mn2+ ions, tensile strains change the Mn ion eg orbital electron occupancy and magnetic exchange to increase the magnetic coercive field of BiMnO3 films. Overall, compressive strains are more conducive to realizing the potential magnetoelectric coupling of BiMnO3 films. This work has important guiding significance of exploring the realization of high-performance multiferroic materials.

By choosing single crystal LaAlO3 with smaller lattice constant as the substrate, the effect of larger compressive strain on the structure, piezoelectric and magnetic properties of BiMnO3 films are further explored. The results show that the lattice mismatch of -3.65% contributes to form the special layered supercell structure of BiMnO3. By adjusting the growth oxygen partial pressure, layered supercells with two different Bi-O structures were fabricated. Both the supercells show typical piezoelectric responses. Due to the different Bi-O structures of the out-of-plane direction, two supercells show difference in the magnetic super-exchange interaction between Mn ions, resulting in different saturated magnetizations of the two supercells.

Based on broadening the applications of materials, BiMnO3 films with flexible freestanding structures are designed to explore its multiferroic properties. Using pulsed laser deposition, water-soluble Sr3Al2O6 thin films were fabricated to serve as the intermediate sacrificial layers for achieving the flexibility of BiMnO3 films. The freestanding BiMnO3 membranes are verified to show high quality with stable structure. Due to the high stability of lattices, the ferroelectricity and ferromagnetism of the transferred freestanding BiMnO3 membranes are preserved well. Moreover, the freestanding BiMnO3 membranes exhibit novel super-flexibility, which originates from the dynamic evolution of ferroelectric nanodomains of the BiMnO3 membranes.

In BiMnO3-based composite system, the superlattice structure of BiFeO3/BiMnO3 is designed with different periodic thickness parameters to tune its multiferroicity. By precisely adjusting the growth parameters using pulsed laser deposition, high-quality BiFeO3/BiMnO3 superlattices with pure phase and clear interfaces were obtained. Through adjusting the periodic parameters of the superlattices, we find that the polarization of BiMnO3 layers is induced by the strong ferroelectric polarization field of the thicker BiFeO3 layers. Moreover, the introduction of antiferromagnetic BiFeO3 leads to the interfacial antiferromagnetic super-exchange coupling of Fe-O-Mn, which tends to kill the net magnetic moment from BiMnO3 layers. By means of obtaining an appropriate ratio of periodic thickness between the BiFeO3 layers and the BiMnO3 layers, the coexistence of strong ferroelectricity and ferromagnetism have achieved finally at low temperature in BiFeO3/BiMnO3 superlattices.

With the advent of the era of big data and artificial intelligence, the exponential growth of data has put forward higher demands on storage technology. The realization of higher speed, higher density and lower power consumption in data storage is imminent. However, the storage density and writing efficiency of current mainstream magnetic storage are still low. Although ferroelectric storage overcomes the above defects correspondingly, they are limited by the need for a destructive read and reset operation. Multiferroic materials, which show ferromagnetism and ferroelectricity simultaneously, provide a unique platform for realizing the compatibility of the two. As the most widely studied lead-free multiferroic materials, bismuth-based multiferroic perovskite oxide thin films show attractive prospects of the applications of storage technology.

In this thesis, the correlations between the multiferroic properties and external factors such as strain, special freestanding structure and superlattice interface of multiferroic BiMnO3 thin films are studied. Firstly, by adjusting the lattice mismatch of films and substrates, the multiferroicity of single-phase BiMnO3 thin films is tuned. Then, the flexible freestanding BiMnO3 membranes with stable structure and multiferroic properties are prepared using water-soluble sacrificial layer to release the strains of the substrate. Finally, by tunning the periodic thickness parameters, the coexistence of strong ferroelectricity and ferromagnetism have realized in BiMnO3-based superlattice systems. Our researches mainly include the following three parts:

Single-phase BiMnO3 thin films with different epitaxial strains are designed to tune their ferroelectric and ferromagnetic properties. High-quality BiMnO3 thin films with different epitaxial strains were fabricated using pulsed laser deposition by selecting different single crystal substrates. Through improving the structural asymmetry in the out-of-plane direction of the films, compressive strains produce larger lattices tetragonality in BiMnO3 films, which effectively enhance the ferroelectric properties of the films. Meanwhile, it is found that the ferromagnetic state of BiMnO3 films is less sensitive to the epitaxial strains. By increasing the proportion of Mn2+ ions, tensile strains change the Mn ion eg orbital electron occupancy and magnetic exchange to increase the magnetic coercive field of BiMnO3 films. Overall, compressive strains are more conducive to realizing the potential magnetoelectric coupling of BiMnO3 films. This work has important guiding significance of exploring the realization of high-performance multiferroic materials.

By choosing single crystal LaAlO3 with smaller lattice constant as the substrate, the effect of larger compressive strain on the structure, piezoelectric and magnetic properties of BiMnO3 films are further explored. The results show that the lattice mismatch of -3.65% contributes to form the special layered supercell structure of BiMnO3. By adjusting the growth oxygen partial pressure, layered supercells with two different Bi-O structures were fabricated. Both the supercells show typical piezoelectric responses. Due to the different Bi-O structures of the out-of-plane direction, two supercells show difference in the magnetic super-exchange interaction between Mn ions, resulting in different saturated magnetizations of the two supercells.

Based on broadening the applications of materials, BiMnO3 films with flexible freestanding structures are designed to explore its multiferroic properties. Using pulsed laser deposition, water-soluble Sr3Al2O6 thin films were fabricated to serve as the intermediate sacrificial layers for achieving the flexibility of BiMnO3 films. The freestanding BiMnO3 membranes are verified to show high quality with stable structure. Due to the high stability of lattices, the ferroelectricity and ferromagnetism of the transferred freestanding BiMnO3 membranes are preserved well. Moreover, the freestanding BiMnO3 membranes exhibit novel super-flexibility, which originates from the dynamic evolution of ferroelectric nanodomains of the BiMnO3 membranes.

In BiMnO3-based composite system, the superlattice structure of BiFeO3/BiMnO3 is designed with different periodic thickness parameters to tune its multiferroicity. By precisely adjusting the growth parameters using pulsed laser deposition, high-quality BiFeO3/BiMnO3 superlattices with pure phase and clear interfaces were obtained. Through adjusting the periodic parameters of the superlattices, we find that the polarization of BiMnO3 layers is induced by the strong ferroelectric polarization field of the thicker BiFeO3 layers. Moreover, the introduction of antiferromagnetic BiFeO3 leads to the interfacial antiferromagnetic super-exchange coupling of Fe-O-Mn, which tends to kill the net magnetic moment from BiMnO3 layers. By means of obtaining an appropriate ratio of periodic thickness between the BiFeO3 layers and the BiMnO3 layers, the coexistence of strong ferroelectricity and ferromagnetism have achieved finally at low temperature in BiFeO3/BiMnO3 superlattices.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2022-07
参考文献列表

[1] Van Aken B B, Rivera J-P, Schmid H, et al. Observation of Ferrotoroidic Domains[J]. Nature, 2007, 449(7163): 702-705.
[2] Schmid H. Multi-Ferroic Magnetoelectrics[J]. Ferroelectrics, 1994, 162(1): 317-338.
[3] Wang K F, Liu J M, Ren Z F. Multiferroicity: the Coupling Between Magnetic and Polarization Orders[J]. Advances in Physics, 2009, 58(4): 321-448.
[4] Spaldin N A, Ramesh R. Advances in Magnetoelectric Multiferroics[J]. Nature Materials, 2019, 18(3): 203-212.
[5] Dong S, Liu J-M, Cheong S-W, et al. Multiferroic Materials and Magnetoelectric Physics: Symmetry, Entanglement, Excitation, and Topology[J]. Advances in Physics, 2015, 64(5-6): 519-626.
[6] Tokura Y. Multiferroics—Toward Strong Coupling Between Magnetization and Polarization in a Solid[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 1145-1150.
[7] Scott J F. Multiferroic Memories[J]. Nature Materials, 2007, 6(4): 256-257.
[8] 南策文. 多铁性材料研究进展及发展方向[J]. 中国科学: 技术科学, 2015, 45(04): 339-357.
[9] Curie P. Sur La Symétrie Dans Les Phénomènes Physiques, Symétrie D’un Champ Électrique et D’un Champ Magnétique[J]. Journal of Theoretical Applied Physics, 1894, 3(1): 393-415.
[10] Debye P. Bemerkung Zu Einigen Neuen Versuchen Über Einen Magneto-elektrischen Richteffekt[J]. Zeitschrift fur Physik, 1926, 36(4): 300-301.
[11] Astrov D N. The Magnetoelectric Effect in Antiferromagnetics[J]. Journal of Experimental and Theoretical Physics, 1960, 11(3): 708.
[12] Ascher E, Rieder H, Schmid H, et al. Some Properties of Ferromagnetoelectric Nickel‐Iodine Boracite, Ni3B7O13I[J]. Journal of Applied Physics, 1966, 37(3): 1404-1405.
[13] Van S J. Product Properties: A New Application of Composite Materials[J]. Philips Research Reports, 1972, 27(1): 28-37.
[14] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures[J]. Science, 2003, 299(5613): 1719-1922.
[15] Hill N A. Why Are There so Few Magnetic Ferroelectrics?[J]. Journal of Physical Chemistry B, 2000, 104(29): 6694-6709.
[16] Kimura T, Goto T, Shintani H, et al. Magnetic Control of Ferroelectric Polarization[J]. Nature, 2003, 426(6962): 55-58.
[17] Bochenek D, Guzdek P. Ferroelectric and Magnetic Properties of Ferroelectromagnetic PbFe1/2Nb1/2O3 Type Ceramics[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(3): 369-374.
[18] Wang W, Zhao J, Wang W, et al. Room-Temperature Multiferroic Hexagonal LuFeO3 Films[J]. Physical Review Letters, 2013, 110(23): 237601.
[19] Disseler S M, Borchers J A, Brooks C M, et al. Magnetic Structure and Ordering of Multiferroic Hexagonal LuFeO3[J]. Physical Review Letters, 2015, 114(21): 217602.
[20] Fiebig M, Lottermoser T, Meier D, et al. The Evolution of Multiferroics[J]. Nature Reviews Materials, 2016, 1(8): 16046.
[21] Choi T, Horibe Y, Yi H T, et al. Insulating Interlocked Ferroelectric and Structural Antiphase Domain Walls in Multiferroic YMnO3[J]. Nature Materials, 2010, 9(3): 253-258.
[22] Subramanian M A, He T, Chen J, et al. Giant Room–Temperature Magnetodielectric Response in the Electronic Ferroelectric LuFe2O4[J]. Advanced Materials, 2006, 18(13): 1737-1739.
[23] Niitaka S, Azuma M, Takano M, et al. Crystal Structure and Dielectric and Magnetic Properties of BiCrO3 as A Ferroelectromagnet[J]. Solid State Ionics, 2004, 172(1): 557-559.
[24] Hill N A, Bättig P, Daul C. First Principles Search for Multiferroism in BiCrO3[J]. The Journal of Physical Chemistry B, 2002, 106(13): 3383-3388.
[25] Catalan G, Scott J F. Physics and Applications of Bismuth Ferrite[J]. Advanced Materials, 2009, 21(24): 2463-2485.
[26] Michel C, Moreau J-M, Achenbach G D, et al. The Atomic Structure of BiFeO3[J]. Solid State Communications, 1969, 7(9): 701-704.
[27] Sosnowska I, Neumaier T P, Steichele E. Spiral Magnetic Ordering in Bismuth Ferrite[J]. Journal of Physics C: Solid State Physics, 1982, 15(23): 4835-4846.
[28] Martin L W, Chu Y-H, Holcomb M B, et al. Nanoscale Control of Exchange Bias with BiFeO3 Thin Films[J]. Nano Letters, 2008, 8(7): 2050-2055.
[29] Fischer P, Polomska M, Sosnowska I, et al. Temperature Dependence of the Crystal and Magnetic Structures of BiFeO3[J]. Journal of Physics C: Solid State Physics, 1980, 13(10): 1931-1940.
[30] Sando D, Agbelele A, Rahmedov D, et al. Crafting the Magnonic and Spintronic Response of BiFeO3 Films by Epitaxial Strain[J]. Nature Materials, 2013, 12(7): 641-646.
[31] Hussain S, Hasanain S K, Hassnain Jaffari G, et al. Thickness Dependent Magnetic and Ferroelectric Properties of LaNiO3 Buffered BiFeO3 Thin Films[J]. Current Applied Physics, 2015, 15(3): 194-200.
[32] Jang H M, Park J H, Ryu S, et al. Magnetoelectric Coupling Susceptibility from Magnetodielectric Effect[J]. Applied Physics Letters, 2008, 93(25): 252904.
[33] Jiang Q H, Ma J, Lin Y H, et al. Multiferroic Properties of Bi0.87La0.05Tb0.08FeO3 Ceramics Prepared by Spark Plasma Sintering[J]. Applied Physics Letters, 2007, 91(2): 022914.
[34] Wu S M, Cybart S A, Yu P, et al. Reversible Electric Control of Exchange Bias in a Multiferroic Field-Effect Device[J]. Nature Materials, 2010, 9(9): 756-761.
[35] Chu Y-H, Martin L W, Holcomb M B, et al. Electric-Field Control of Local Ferromagnetism Using a Magnetoelectric Multiferroic[J]. Nature Materials, 2008, 7(6): 478-482.
[36] Belik A A, Iikubo S, Yokosawa T, et al. Origin of the Monoclinic-to-Monoclinic Phase Transition and Evidence for the Centrosymmetric Crystal Structure of BiMnO3[J]. Journal of the American Chemical Society, 2007, 129(4): 971-977.
[37] Kimura T, Kawamoto S, Yamada I, et al. Magnetocapacitance Effect in Multiferroic BiMnO3[J]. Physical Review B, 2003, 67(18): 180401.
[38] Chi Z H, Xiao C J, Feng S M, et al. Manifestation of Ferroelectromagnetism in Multiferroic BiMnO3[J]. Journal of Applied Physics, 2005, 98(10): 103519.
[39] Moreira Dos Santos A F, Cheetham A K, Tian W, et al. Epitaxial Growth and Properties of Metastable BiMnO3 Thin Films[J]. Applied Physics Letters, 2004, 84(1): 91-93.
[40] Solovyev I V, Pchelkina Z V. Orbital Ordering and Magnetic Interactions in BiMnO3[J]. New Journal of Physics, 2008, 10(7): 073021.
[41] Yang C H, Koo T Y, Lee S H, et al. Orbital Ordering and Enhanced Magnetic Frustration of Strained BiMnO3 Thin Films[J]. Europhysics Letters, 2006, 74(2): 348-354.
[42] Moreira Dos Santos A, Cheetham A K, Atou T, et al. Orbital Ordering as the Determinant for Ferromagnetism in Biferroic BiMnO3[J]. Physical Review B, 2002, 66(6): 064425.
[43] Gonchar L E, Nikiforov A E. Crucial Role of Orbital Structure in Formation of Frustrated Magnetic Structure in BiMnO3[J]. Physical Review B, 2013, 88(9): 094401.
[44] Montanari E, Calestani G, Righi L, et al. Structural Anomalies at the Magnetic Transition in Centrosymmetric BiMnO3[J]. Physical Review B, 2007, 75(22): 220101.
[45] Luca G M D, Preziosi D, Chiarella F, et al. Ferromagnetism and Ferroelectricity in Epitaxial BiMnO3 Ultra-Thin Films[J]. Applied Physics Letters, 2013, 103(6): 062902.
[46] Atou T, Chiba H, Ohoyama K, et al. Structure Determination of Ferromagnetic Perovskite BiMnO3[J]. Journal of Solid State Chemistry, 1999, 145(2): 639-642.
[47] Seshadri R, Hill N A. Visualizing the Role of Bi 6s “Lone Pairs” in the Off-Center Distortion in Ferromagnetic BiMnO3[J]. Chemistry of Materials, 2001, 13(9): 2892-2899.
[48] Hill N A, Rabe K M. First-Principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite[J]. Physical Review B, 1999, 59(13): 8759-8769.
[49] Moreira Dos Santos A, Parashar S, Raju A R, et al. Evidence for the Likely Occurrence of Magnetoferroelectricity in the Simple Perovskite, BiMnO3[J]. Solid State Communications, 2002, 122(1): 49-52.
[50] Chi Z H, Yang H, Feng S M, et al. Room-Temperature Ferroelectric Polarization in Multiferroic BiMnO3[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): e358-e360.
[51] Baettig P, Seshadri R, Spaldin N A. Anti-Polarity in Ideal BiMnO3[J]. Journal of the American Chemical Society, 2007, 129(32): 9854-9855.
[52] Yang N, Yuan Y, Guan Z, et al. Structure Dependence of Ferroelectricity in High Quality BiMnO3 Epitaxial Films[J]. Physical Review Materials, 2019, 3(5): 054402.
[53] De Luca G M, Perroni C A, Di Capua R, et al. Strain and Electric Field Control of the Orbital and Spin Order in Multiferroic BiMnO3[J]. The European Physical Journal Plus, 2020, 135(6): 473.
[54] Sharan A, Lettieri J, Jia Y, et al. Bismuth Manganite: A Multiferroic with a Large Nonlinear Optical Response[J]. Physical Review B, 2004, 69(21): 214109.
[55] Mickel P R, Jeen H, Kumar P, et al. Proximate Transition Temperatures Amplify Linear Magnetoelectric Coupling in Strain-Disordered Multiferroic BiMnO3[J]. Physical Review B, 2016, 93(13): 134205.
[56] Grizalez M, Martinez E, Caicedo J, et al. Occurrence of Ferroelectricity in Epitaxial BiMnO3 Thin Films[J]. Microelectronics Journal, 2008, 39(11): 1308-1310.
[57] Jeen H, Singhbhalla G, Mickel P R, et al. Growth and Characterization of Multiferroic BiMnO3 Thin Films[J]. Journal of Applied Physics, 2011, 109(7): 074104.
[58] Son J, Shin Y-H. Multiferroic BiMnO3 Thin Films with Double SrTiO3 Buffer Layers[J]. Applied Physics Letters, 2008, 93(6): 062902.
[59] Diéguez O, Íñiguez J. Epitaxial Phases of BiMnO3 from First Principles[J]. Physical Review B, 2015, 91(18): 184113.
[60] Nan C-W, Bichurin M I, Dong S, et al. Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions[J]. Journal of Applied Physics, 2008, 103(3): 031101.
[61] Shuxiang D, Jie-Fang L, Viehland D. Longitudinal and Transverse Magnetoelectric Voltage Coefficients of Magnetostrictive/Piezoelectric Laminate Composite: Theory[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(10): 1253-1261.
[62] Nan C W, Li M, Huang J H. Calculations of Giant Magnetoelectric Effects in Ferroic Composites of Rare-Earth-Iron Alloys and Ferroelectric Polymers[J]. Physical Review B, 2001, 63(14): 144415.
[63] Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 Nanostructures[J]. Science, 2004, 303(5658): 661-663.
[64] Lorenz M, Lazenka V, Schwinkendorf P, et al. Multiferroic BaTiO3–BiFeO3 Composite Thin Films and Multilayers: Strain Engineering and Magnetoelectric Coupling[J]. Journal of Physics D: Applied Physics, 2014, 47(13): 135303.
[65] Wang Y, Hu J, Lin Y, et al. Multiferroic Magnetoelectric Composite Nanostructures[J]. NPG Asia Materials, 2010, 2(2): 61-68.
[66] Thiele C, Dörr K, Bilani O, et al. Influence of Strain on the Magnetization and Magnetoelectric Effect in La0.7A0.3MnO3∕PMN−PT(001)(A=Sr,Ca)[J]. Physical Review B, 2007, 75(5): 054408.
[67] Lei N, Devolder T, Agnus G, et al. Strain-Controlled Magnetic Domain Wall Propagation in Hybrid Piezoelectric/Ferromagnetic Structures[J]. Nature Communications, 2013, 4(1): 1378.
[68] Heron J T, Bosse J L, He Q, et al. Deterministic Switching of Ferromagnetism at Room Temperature Using an Electric Field[J]. Nature, 2014, 516(7531): 370-373.
[69] Bibes M, Barthélémy A. Towards a magnetoelectric memory[J]. Nature Materials, 2008, 7(6): 425-426.
[70] Molegraaf H J A, Hoffman J, Vaz C a F, et al. Magnetoelectric Effects in Complex Oxides with Competing Ground States[J]. Advanced Materials, 2009, 21(34): 3470-3474.
[71] Duan C-G, Jaswal S S, Tsymbal E Y. Predicted Magnetoelectric Effect in Fe/BaTiO3 Multilayers: Ferroelectric Control of Magnetism[J]. Physical Review Letters, 2006, 97(4): 047201.
[72] Lee J, Sai N, Cai T, et al. Interfacial Magnetoelectric Coupling in Tricomponent Superlattices[J]. Physical Review B, 2010, 81(14): 144425.
[73] Choi T, Lee S, Choi Y J, et al. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3[J]. Science, 2009, 324(5923): 63-66.
[74] Zeches R J, Rossell M D, Zhang J X, et al. A Strain-Driven Morphotropic Phase Boundary in BiFeO3[J]. Science, 2009, 326(5955): 977-980.
[75] Zhang J X, He Q, Trassin M, et al. Microscopic Origin of the Giant Ferroelectric Polarization in Tetragonal-Like BiFeO3[J]. Physical Review Letters, 2011, 107(14): 147602.
[76] Chen D, Chen Z, He Q, et al. Interface Engineering of Domain Structures in BiFeO3 Thin Films[J]. Nano Letters, 2017, 17(1): 486-493.
[77] Gajek M, Bibes M, Fusil S, et al. Tunnel Junctions with Multiferroic Barriers[J]. Nature Materials, 2007, 6(4): 296-302.
[78] Pálová L, Chandra P, Rabe K M. Multiferroic BiFeO3-BiMnO3 Nanoscale Checkerboard from First Principles[J]. Physical Review B, 2010, 82(7): 075432.
[79] Palova L, Chandra P, Rabe K M. Magnetostructural Effect in the Multiferroic BiFeO3-BiMnO3 Checkerboard from First Principles[J]. Physical Review Letters, 2010, 104(3): 037202.
[80] Yang Y, Bellaiche L, Íñiguez J. Exploiting Interfacial and Size Effects to Construct Oxide Superlattices with Robust and Tunable Magnetoelectric Properties at Room Temperature[J]. Physical Review B, 2015, 91(7): 075423.
[81] Xiong J, Matias V, Tao B W, et al. Ferroelectric and Ferromagnetic Properties of Epitaxial BiFeO3-BiMnO3 Films on Ion-Beam-Assisted Deposited TiN Buffered Flexible Hastelloy[J]. Journal of Applied Physics, 2014, 115(17): 17D913.
[82] Chakrabartty J, Nechache R, Harnagea C, et al. Enhanced Photovoltaic Properties in Bilayer BiFeO3/Bi-Mn-O Thin Films[J]. Nanotechnology, 2016, 27(21): 215402.
[83] Xu Q, Sheng Y, Khalid M, et al. Magnetic Interactions in BiFe0.5Mn0.5O3 Films and BiFeO3/BiMnO3 Superlattices[J]. Scientific Reports, 2015, 5(1): 9093.
[84] Choi E-M, Kleibeuker J E, Fix T, et al. Interface-Coupled BiFeO3/BiMnO3 Superlattices with Magnetic Transition Temperature up to 410 K[J]. Advanced Materials Interfaces, 2016, 3(5): 1500597.
[85] Barman R, Kaur D. Leakage Current Behavior of BiFeO3/BiMnO3 Multilayer Fabricated by Pulsed Laser Deposition[J]. Journal of Alloys and Compounds, 2015, 644: 506-512.
[86] Xu Q, Sheng Y, He M, et al. The Multiferroic Properties of BiFe0.5Mn0.5O3 and BiFeO3/BiMnO3 Superlattice Films[J]. Journal of Applied Physics, 2015, 117(17): 17D911.
[87] Lee J H, Ke X, Misra R, et al. Adsorption-Controlled Growth of BiMnO3 Films by Molecular-Beam Epitaxy[J]. Applied Physics Letters, 2010, 96(26): 262905.
[88] Vaz C A, Hoffman J, Ahn C H, et al. Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures[J]. Advanced Materials, 2010, 22(26‐27): 2900-2918.
[89] Solovyev I V, Pchelkina Z V. Magnetic-Field Control of the Electric Polarization in BiMnO3[J]. Physical Review B, 2010, 82(9): 094425.
[90] Schlom D G, Chen L-Q, Fennie C J, et al. Elastic Strain Engineering of Ferroic Oxides[J]. MRS Bulletin, 2014, 39(2): 118-130.
[91] Welser J, Hoyt J L, Gibbons J F. Electron Mobility Enhancement in Strained-Si N-Type Metal-Oxide-Semiconductor Field-Effect Transistors[J]. IEEE Electron Device Letters, 1994, 15(3): 100-102.
[92] Shockley W, Bardeen J. Energy Bands and Mobilities in Monatomic Semiconductors[J]. Physical Review, 1950, 77(3): 407-408.
[93] Bozovic I, Logvenov G, Belca I, et al. Epitaxial Strain and Superconductivity in La2-xSrxCuO4 Thin Films[J]. Physical Review Letters, 2002, 89(10): 107001.
[94] Beach R S, Borchers J A, Matheny A, et al. Enhanced Curie Temperatures and Magnetoelastic Domains in Dy/Lu Superlattices and Films[J]. Physical Review Letters, 1993, 70(22): 3502-3505.
[95] Lee J H, Fang L, Vlahos E, et al. A Strong Ferroelectric Ferromagnet Created by Means of Spin–Lattice Coupling[J]. Nature, 2010, 466(7309): 954-958.
[96] Haeni J H, Irvin P, Chang W, et al. Room-Temperature Ferroelectricity in Strained SrTiO3[J]. Nature, 2004, 430(7001): 758-761.
[97] Choi K J, Biegalski M, Li Y L, et al. Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films[J]. Science, 2004, 306(5698): 1005-1009.
[98] Choi E M, Kursumovic A, Lee O J, et al. Ferroelectric Sm-Doped BiMnO3 Thin Films with Ferromagnetic Transition Temperature Enhanced to 140 K[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 14836-14843.
[99] Schlom D G, Chen L-Q, Eom C-B, et al. Strain Tuning of Ferroelectric Thin Films[J]. Annual Review of Materials Research, 2007, 37(1): 589-626.
[100] Béa H, Dupé B, Fusil S, et al. Evidence for Room-Temperature Multiferroicity in a Compound with a Giant Axial Ratio[J]. Physical Review Letters, 2009, 102(21): 217603.
[101] Son J Y, Kim B G, Kim C H, et al. Writing Polarization Bits on the Multiferroic BiMnO3 Thin Film Using Kelvin Probe Force Microscope[J]. Applied Physics Letters, 2004, 84(24): 4971-4973.
[102] Eerenstein W, Morrison F D, Scott J F, et al. Growth of Highly Resistive BiMnO3 Films[J]. Applied Physics Letters, 2005, 87(10): 101906.
[103] Acharya S A, Gaikwad V M, Kulkarni S K, et al. Low Pressure Synthesis of BiMnO3 Nanoparticles: Anomalous Structural and Magnetic Features[J]. Journal of Materials Science, 2016, 52(1): 458-466.
[104] Yan Y, Sun B, Ma D J. Resistive Switching Memory of Single BiMnO3+δ Nanorods[J]. Journal of Materials Science: Materials in Electronics, 2015, 27(1): 512-516.
[105] Stranick M A. Mn2O3 by XPS[J]. Surface Science Spectra, 1999, 6(1): 39-46.
[106] Di Castro V, Polzonetti G. XPS Study of MnO Oxidation[J]. Journal of Electron Spectroscopy and Related Phenomena, 1989, 48(1): 117-123.
[107] Shibagaki S, Fukushima K. XPS Analysis on Nb–SrTiO3 Thin Films Deposited with Pulsed Laser Ablation Technique[J]. Journal of the European Ceramic Society, 1999, 19(6): 1423-1426.
[108] Salluzzo M, Gariglio S, Stornaiuolo D, et al. Origin of Interface Magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 Heterostructures[J]. Physical Review Letters, 2013, 111(8): 087204.
[109] Es-Souni M, Zhang N, Iakovlev S, et al. Thickness and Erbium Doping Effects on the Electrical Properties of Lead Zirconate Titanate Thin Films[J]. Thin Solid Films, 2003, 440(1): 26-34.
[110] Balke N, Maksymovych P, Jesse S, et al. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy[J]. ACS Nano, 2015, 9(6): 6484-6492.
[111] Vasudevan R K, Balke N, Maksymovych P, et al. Ferroelectric or Non-Ferroelectric: Why so Many Materials Exhibit “Ferroelectricity” on the Nanoscale[J]. Applied Physics Reviews, 2017, 4(2): 021302.
[112] Gruverman A, Alexe M, Meier D. Piezoresponse Force microscopy and Nanoferroic Phenomena[J]. Nature Communications, 2019, 10(1): 1661.
[113] Yao J, Ye M, Sun Y, et al. Atomic-Scale Insight into the Reversibility of Polar Order in Ultrathin Epitaxial Nb:SrTiO3/BaTiO3 Heterostructure and Its Implication to Resistive Switching[J]. Acta Materialia, 2020, 188: 23-29.
[114] Guan Z, Jiang Z-Z, Tian B-B, et al. Identifying Intrinsic Ferroelectricity of Thin Film with Piezoresponse Force Microscopy[J]. AIP Advances, 2017, 7(9): 095116.
[115] Yu J, Esfahani E N, Zhu Q, et al. Quadratic Electromechanical Strain in Silicon Investigated by Scanning Probe Microscopy[J]. Journal of Applied Physics, 2018, 123(15): 155104.
[116] Wang S, Wang H, Jian J, et al. Effects of LNO Buffer Layers on Electrical Properties of BFO-PT Thin Films on Stainless Steel Substrates[J]. Journal of Alloys and Compounds, 2019, 784: 231-236.
[117] Lee K, Lee T Y, Yang S M, et al. Ferroelectricity in Epitaxial Y-Doped HfO2 Thin Film Integrated on Si Substrate[J]. Applied Physics Letters, 2018, 112(20): 202901.
[118] Lee C-C, Wu J-M. Thickness-Dependent Retention Behaviors and Ferroelectric Properties of BiFeO3 Thin Films on BaPbO3 Electrodes[J]. Applied Physics Letters, 2007, 91(10): 102906.
[119] Ganpule C S, Nagarajan V, Ogale S B, et al. Domain Nucleation and Relaxation Kinetics in Ferroelectric Thin Films[J]. Applied Physics Letters, 2000, 77(20): 3275-3277.
[120] Pradhan S, Rath M, David A, et al. Thickness-Dependent Domain Relaxation Dynamics Study in Epitaxial K0.5Na0.5NbO3 Ferroelectric Thin Films[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 36407-36415.
[121] Jung M H, Yang I K, Jeong Y H. Investigation of the Magnetic and the Ferroelectric Properties of BiMnO3 Thin Films[J]. Journal of the Korean Physical Society, 2013, 63(3): 624-626.
[122] Grizalez M, Delgado E, Gómez M E, et al. Magnetic and Electrical Properties of BiMnO3 Thin Films[J]. Physica Status Solidi C, 2007, 4(11): 4203-4208.
[123] Gan Q, Rao R A, Eom C B, et al. Direct Measurement of Strain Effects on Magnetic and Electrical Properties of Epitaxial SrRuO3 Thin Films[J]. Applied Physics Letters, 1998, 72(8): 978-980.
[124] Lu Z, Liu J, Feng J, et al. Synthesis of Single-Crystal La0.67Sr0.33MnO3 Freestanding Films with Different Crystal-Orientation[J]. APL Materials, 2020, 8(5): 051105.
[125] Yu P, Lee J S, Okamoto S, et al. Interface Ferromagnetism and Orbital Reconstruction in BiFeO3-La0.7Sr0.3MnO3 Heterostructures[J]. Physical Review Letters, 2010, 105(2): 027201.
[126] Huijben M, Yu P, Martin L W, et al. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces[J]. Advanced Materials, 2013, 25(34): 4739-4745.
[127] Ding J F, Lebedev O I, Turner S, et al. Interfacial Spin Glass State and Exchange Bias in Manganite Bilayers with Competing Magnetic Orders[J]. Physical Review B, 2013, 87(5): 054428.
[128] Jaafar M, Pablo-Navarro J, Berganza E, et al. Customized MFM Probes Based on Magnetic Nanorods[J]. Nanoscale, 2020, 12(18): 10090-10097.
[129] Talapatra A, Mohanty J. Laser Induced Local Modification of Magnetic Domain in Co/Pt Multilayer[J]. Journal of Magnetism and Magnetic Materials, 2016, 418: 224-230.
[130] Ausanio G, Iannotti V, Lanotte L, et al. Weak Stripe Domains in Co/Fe Multilayers[J]. Journal of Magnetism and Magnetic Materials, 2001, 226-230: 1740-1742.
[131] Hu S, Cazorla C, Xiang F, et al. Strain Control of Giant Magnetic Anisotropy in Metallic Perovskite SrCoO3-δ Thin Films[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22348-22355.
[132] Li L, Boullay P, Cheng J, et al. Self-Assembled Two-Dimensional Layered Oxide Supercells with Modulated Layer Stacking and Tunable Physical Properties[J]. Materials Today Nano, 2019, 6: 100037.
[133] Li L, Boullay P, Lu P, et al. Novel Layered Supercell Structure from Bi2AlMnO6 for Multifunctionalities[J]. Nano Letters, 2017, 17(11): 6575-6582.
[134] Zhang W, Li M, Chen A, et al. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16845-16851.
[135] Li L, Cheng J, Wang H, et al. Interfacial Engineering Enabled Novel Bi-Based Layered Oxide Supercells with Modulated Microstructures and Tunable Physical Properties[J]. Crystal Growth & Design, 2019, 19(12): 7088-7095.
[136] Hu S, Han W, Hu S, et al. Voltage-Controlled Oxygen Non-Stoichiometry in SrCoO3−δ Thin Films[J]. Chemistry of Materials, 2019, 31(16): 6117-6123.
[137] Chen A, Zhou H, Bi Z, et al. A New Class of Room-Temperature Multiferroic Thin Films with Bismuth-Based Supercell Structure[J]. Advanced Materials, 2013, 25(7): 1028-1032.
[138] Li L, Zhang W, Khatkhatay F, et al. Strain and Interface Effects in a Novel Bismuth-Based Self-Assembled Supercell Structure[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11631-11636.
[139] Wong W S, Sands T, Cheung N W. Damage-Free Separation of GaN Thin Films from Sapphire Substrates[J]. Applied Physics Letters, 1998, 72(5): 599-601.
[140] Kum H S, Lee H, Kim S, et al. Heterogeneous Integration of Single-Crystalline Complex-Oxide Membranes[J]. Nature, 2020, 578(7793): 75-81.
[141] Paskiewicz D M, Sichel-Tissot R, Karapetrova E, et al. Single-Crystalline SrRuO3 Nanomembranes: A Platform for Flexible Oxide Electronics[J]. Nano Letters, 2016, 16(1): 534-542.
[142] Bakaul S R, Serrao C R, Lee M, et al. Single Crystal Functional Oxides on Silicon[J]. Nature Communications, 2016, 7(1): 10547.
[143] Zhang Y, Shen L, Liu M, et al. Flexible Quasi-Two-Dimensional CoFe2O4 Epitaxial Thin Films for Continuous Strain Tuning of Magnetic Properties[J]. ACS Nano, 2017, 11(8): 8002-8009.
[144] Eom K, Yu M, Seo J, et al. Electronically Reconfigurable Complex Oxide Heterostructure Freestanding Membranes[J]. Science Advances, 2021, 7(33): eabh1284.
[145] Lu D, Baek D J, Hong S S, et al. Synthesis of Freestanding Single-Crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-Soluble Layers[J]. Nature Materials, 2016, 15(12): 1255-1260.
[146] Hong S S, Yu J H, Lu D, et al. Two-Dimensional Limit of Crystalline Order in Perovskite Membrane Films[J]. Science Advances, 2017, 3(11): eaao5173.
[147] Ji D, Cai S, Paudel T R, et al. Freestanding Crystalline Oxide Perovskites Down to the Monolayer Limit[J]. Nature, 2019, 570(7759): 87-90.
[148] Dong G, Li S, Yao M, et al. Super-Elastic Ferroelectric Single-Crystal Membrane with Continuous Electric Dipole Rotation[J]. Science, 2019, 366(6464): 475-479.
[149] Hong S S, Gu M, Verma M, et al. Extreme Tensile Strain States in La0.7Ca0.3MnO3 Membranes[J]. Science, 2020, 368(6486): 71-76.
[150] Xu R, Huang J, Barnard E S, et al. Strain-Induced Room-Temperature Ferroelectricity in SrTiO3 Membranes[J]. Nature Communications, 2020, 11(1): 3141.
[151] Guo R, You L, Lin W, et al. Continuously Controllable Photoconductance in Freestanding BiFeO3 by the Macroscopic Flexoelectric Effect[J]. Nature Communications, 2020, 11(1): 2571.
[152] Alonso J A, Rasines I, Soubeyroux J L. Tristrontium Dialuminum Hexaoxide: an Intricate Superstructure of Perovskite[J]. Inorganic Chemistry, 1990, 29(23): 4768-4771.
[153] Chakoumakos B C, Lager G A, Fernandez-Baca J A. Refinement of the Structures of Sr3Al2O6 and the Hydrogarnet Sr3Al2(O4D4)3 by Rietveld Analysis of Neutron Powder Diffraction Data[J]. Acta Crystallographica Section C, 1992, 48(3): 414-419.
[154] Chiba H, Atou T, Syono Y. Magnetic and Electrical Properties of Bi1−xSrxMnO3: Hole-Doping Effect on Ferromagnetic Perovskite BiMnO3[J]. Journal of Solid State Chemistry, 1997, 132(1): 139-143.
[155] Ramírez-Camacho M C, Sánchez-Valdés C F, Gervacio-Arciniega J J, et al. Room Temperature Ferromagnetism and Ferroelectricity in Strained Multiferroic BiFeO3 Thin Films on La0.7Sr0.3MnO3/SiO2/Si Substrates[J]. Acta Materialia, 2017, 128: 451-464.
[156] Peng B, Peng R-C, Zhang Y-Q, et al. Phase Transition Enhanced Superior Elasticity in Freestanding Single-Crystalline Multiferroic BiFeO3 Membranes[J]. Science Advanced, 2020, 6(34): eaba5847.
[157] Zhao J, Winey J M, Gupta Y M. First-Principles Calculations of Second- and Third-Order Elastic Constants for Single Crystals of Arbitrary Symmetry[J]. Physical Review B, 2007, 75(9): 094105.
[158] Mundy J A, Brooks C M, Holtz M E, et al. Atomically Engineered Ferroic Layers Yield a Room-Temperature Magnetoelectric Multiferroic[J]. Nature, 2016, 537(7621): 523.
[159] Ramesh R, Schlom D G. Creating Emergent Phenomena in Oxide Superlattices[J]. Nature Reviews Materials, 2019, 4(4): 257-268.
[160] Ye M, Hu S, Zhu Y, et al. Electric Polarization Switching on an Atomically Thin Metallic Oxide[J]. Nano Letters, 2020, 21(1): 144-150.
[161] Dawber M, Lichtensteiger C, Cantoni M, et al. Unusual Behavior of the Ferroelectric Polarization in PbTiO3/SrTiO3 Superlattices[J]. Physical Review Letters, 2005, 95(17): 177601.
[162] Dawber M, Rabe K M, Scott J F. Physics of Thin-Film Ferroelectric Oxides[J]. Reviews of Modern Physics, 2005, 77(4): 1083-1130.
[163] Johnston K, Huang X, Neaton J B, et al. First-Principles Study of Symmetry Lowering and Polarization in BaTiO3/SrTiO3 Superlattices with in-Plane Expansion[J]. Physical Review B, 2005, 71(10): 100103.
[164] Nakhmanson S M, Rabe K M, Vanderbilt D. Predicting Polarization Enhancement in Multicomponent Ferroelectric Superlattices[J]. Physical Review B, 2006, 73(6): 060101.
[165] Lebedev O, Hamet J-F, Vantendeloo G, et al. Structure and Properties of the YBa2Cu3O7-x/LaAlO3 Superlattices[J]. Journal of Applied Physics, 2001, 90(10): 5261-5267.
[166] Chen Z, Chen Z, Kuo C-Y, et al. Complex Strain Evolution of Polar and Magnetic Order in Multiferroic BiFeO3 Thin Films[J]. Nature Communications, 2018, 9(1): 3764.
[167] Czekaj S, Nolting F, Heyderman L J, et al. Sign Dependence of the X-ray Magnetic Linear Dichroism on the Antiferromagnetic Spin Axis in LaFeO3 Thin Films[J]. Physical Review B, 2006, 73(2): 020401.
[168] Gilbert B, Frazer B H, Belz A, et al. Multiple Scattering Calculations of Bonding and X-ray Absorption Spectroscopy of Manganese Oxides[J]. The Journal of Physical Chemistry A, 2003, 107(16): 2839-2847.
[169] Jia C-L, Nagarajan V, He J-Q, et al. Unit-Cell Scale Mapping of Ferroelectricity and Tetragonality in Epitaxial Ultrathin Ferroelectric Films[J]. Nature Materials, 2007, 6(1): 64-69.
[170] Wang H, Liu Z R, Yoong H Y, et al. Direct Observation of Room-Temperature Out-of-Plane Ferroelectricity and Tunneling Electroresistance at the Two-Dimensional Limit[J]. Nature Communications, 2018, 9(1): 3319.
[171] Dho J Q, X. Kim, H. Macmanus-Driscoll, J. L Blamire, M. G. Large Electric Polarization and Exchange Bias in Multiferroic BiFeO3[J]. Advanced Materials, 2006, 18(11): 1445-1448.
[172] Yi D, Liu J, Okamoto S, et al. Tuning the Competition between Ferromagnetism and Antiferromagnetism in a Half-Doped Manganite through Magnetoelectric Coupling[J]. Physical Review Letters, 2013, 111(12): 127601.
[173] Xiong J, Lei T, Chu J, et al. Ferromagnetic–Antiferromagnetic Coupling by Distortion of Fe/Mn Oxygen Octahedrons in (BiFeO3)m(La0.7Sr0.3MnO3)n Superlattices[J]. Small, 2017, 13(18): 1700107.
[174] Bi L, Taussig A R, Kim H-S, et al. Structural, Magnetic, and Optical Properties of BiFeO3 and Bi2FeMnO6 Epitaxial Thin Films: An Experimental and First-Principles Study[J]. Physical Review B, 2008, 78(10): 104106.
[175] Novotny Z, Mulakaluri N, Edes Z, et al. Probing the Surface Phase Diagram of Fe3O4 (001) Towards the Fe-Rich Limit: Evidence for Progressive Reduction of the Surface[J]. Physical Review B, 2013, 87(19): 195410.

所在学位评定分委会
物理系
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/407040
专题理学院_物理系
推荐引用方式
GB/T 7714
金财. 铋系锰氧化物多铁薄膜的结构设计及性能研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749244-金财-物理系.pdf(11887KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[金财]的文章
百度学术
百度学术中相似的文章
[金财]的文章
必应学术
必应学术中相似的文章
[金财]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。