[1] Van Aken B B, Rivera J-P, Schmid H, et al. Observation of Ferrotoroidic Domains[J]. Nature, 2007, 449(7163): 702-705.
[2] Schmid H. Multi-Ferroic Magnetoelectrics[J]. Ferroelectrics, 1994, 162(1): 317-338.
[3] Wang K F, Liu J M, Ren Z F. Multiferroicity: the Coupling Between Magnetic and Polarization Orders[J]. Advances in Physics, 2009, 58(4): 321-448.
[4] Spaldin N A, Ramesh R. Advances in Magnetoelectric Multiferroics[J]. Nature Materials, 2019, 18(3): 203-212.
[5] Dong S, Liu J-M, Cheong S-W, et al. Multiferroic Materials and Magnetoelectric Physics: Symmetry, Entanglement, Excitation, and Topology[J]. Advances in Physics, 2015, 64(5-6): 519-626.
[6] Tokura Y. Multiferroics—Toward Strong Coupling Between Magnetization and Polarization in a Solid[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 1145-1150.
[7] Scott J F. Multiferroic Memories[J]. Nature Materials, 2007, 6(4): 256-257.
[8] 南策文. 多铁性材料研究进展及发展方向[J]. 中国科学: 技术科学, 2015, 45(04): 339-357.
[9] Curie P. Sur La Symétrie Dans Les Phénomènes Physiques, Symétrie D’un Champ Électrique et D’un Champ Magnétique[J]. Journal of Theoretical Applied Physics, 1894, 3(1): 393-415.
[10] Debye P. Bemerkung Zu Einigen Neuen Versuchen Über Einen Magneto-elektrischen Richteffekt[J]. Zeitschrift fur Physik, 1926, 36(4): 300-301.
[11] Astrov D N. The Magnetoelectric Effect in Antiferromagnetics[J]. Journal of Experimental and Theoretical Physics, 1960, 11(3): 708.
[12] Ascher E, Rieder H, Schmid H, et al. Some Properties of Ferromagnetoelectric Nickel‐Iodine Boracite, Ni3B7O13I[J]. Journal of Applied Physics, 1966, 37(3): 1404-1405.
[13] Van S J. Product Properties: A New Application of Composite Materials[J]. Philips Research Reports, 1972, 27(1): 28-37.
[14] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures[J]. Science, 2003, 299(5613): 1719-1922.
[15] Hill N A. Why Are There so Few Magnetic Ferroelectrics?[J]. Journal of Physical Chemistry B, 2000, 104(29): 6694-6709.
[16] Kimura T, Goto T, Shintani H, et al. Magnetic Control of Ferroelectric Polarization[J]. Nature, 2003, 426(6962): 55-58.
[17] Bochenek D, Guzdek P. Ferroelectric and Magnetic Properties of Ferroelectromagnetic PbFe1/2Nb1/2O3 Type Ceramics[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(3): 369-374.
[18] Wang W, Zhao J, Wang W, et al. Room-Temperature Multiferroic Hexagonal LuFeO3 Films[J]. Physical Review Letters, 2013, 110(23): 237601.
[19] Disseler S M, Borchers J A, Brooks C M, et al. Magnetic Structure and Ordering of Multiferroic Hexagonal LuFeO3[J]. Physical Review Letters, 2015, 114(21): 217602.
[20] Fiebig M, Lottermoser T, Meier D, et al. The Evolution of Multiferroics[J]. Nature Reviews Materials, 2016, 1(8): 16046.
[21] Choi T, Horibe Y, Yi H T, et al. Insulating Interlocked Ferroelectric and Structural Antiphase Domain Walls in Multiferroic YMnO3[J]. Nature Materials, 2010, 9(3): 253-258.
[22] Subramanian M A, He T, Chen J, et al. Giant Room–Temperature Magnetodielectric Response in the Electronic Ferroelectric LuFe2O4[J]. Advanced Materials, 2006, 18(13): 1737-1739.
[23] Niitaka S, Azuma M, Takano M, et al. Crystal Structure and Dielectric and Magnetic Properties of BiCrO3 as A Ferroelectromagnet[J]. Solid State Ionics, 2004, 172(1): 557-559.
[24] Hill N A, Bättig P, Daul C. First Principles Search for Multiferroism in BiCrO3[J]. The Journal of Physical Chemistry B, 2002, 106(13): 3383-3388.
[25] Catalan G, Scott J F. Physics and Applications of Bismuth Ferrite[J]. Advanced Materials, 2009, 21(24): 2463-2485.
[26] Michel C, Moreau J-M, Achenbach G D, et al. The Atomic Structure of BiFeO3[J]. Solid State Communications, 1969, 7(9): 701-704.
[27] Sosnowska I, Neumaier T P, Steichele E. Spiral Magnetic Ordering in Bismuth Ferrite[J]. Journal of Physics C: Solid State Physics, 1982, 15(23): 4835-4846.
[28] Martin L W, Chu Y-H, Holcomb M B, et al. Nanoscale Control of Exchange Bias with BiFeO3 Thin Films[J]. Nano Letters, 2008, 8(7): 2050-2055.
[29] Fischer P, Polomska M, Sosnowska I, et al. Temperature Dependence of the Crystal and Magnetic Structures of BiFeO3[J]. Journal of Physics C: Solid State Physics, 1980, 13(10): 1931-1940.
[30] Sando D, Agbelele A, Rahmedov D, et al. Crafting the Magnonic and Spintronic Response of BiFeO3 Films by Epitaxial Strain[J]. Nature Materials, 2013, 12(7): 641-646.
[31] Hussain S, Hasanain S K, Hassnain Jaffari G, et al. Thickness Dependent Magnetic and Ferroelectric Properties of LaNiO3 Buffered BiFeO3 Thin Films[J]. Current Applied Physics, 2015, 15(3): 194-200.
[32] Jang H M, Park J H, Ryu S, et al. Magnetoelectric Coupling Susceptibility from Magnetodielectric Effect[J]. Applied Physics Letters, 2008, 93(25): 252904.
[33] Jiang Q H, Ma J, Lin Y H, et al. Multiferroic Properties of Bi0.87La0.05Tb0.08FeO3 Ceramics Prepared by Spark Plasma Sintering[J]. Applied Physics Letters, 2007, 91(2): 022914.
[34] Wu S M, Cybart S A, Yu P, et al. Reversible Electric Control of Exchange Bias in a Multiferroic Field-Effect Device[J]. Nature Materials, 2010, 9(9): 756-761.
[35] Chu Y-H, Martin L W, Holcomb M B, et al. Electric-Field Control of Local Ferromagnetism Using a Magnetoelectric Multiferroic[J]. Nature Materials, 2008, 7(6): 478-482.
[36] Belik A A, Iikubo S, Yokosawa T, et al. Origin of the Monoclinic-to-Monoclinic Phase Transition and Evidence for the Centrosymmetric Crystal Structure of BiMnO3[J]. Journal of the American Chemical Society, 2007, 129(4): 971-977.
[37] Kimura T, Kawamoto S, Yamada I, et al. Magnetocapacitance Effect in Multiferroic BiMnO3[J]. Physical Review B, 2003, 67(18): 180401.
[38] Chi Z H, Xiao C J, Feng S M, et al. Manifestation of Ferroelectromagnetism in Multiferroic BiMnO3[J]. Journal of Applied Physics, 2005, 98(10): 103519.
[39] Moreira Dos Santos A F, Cheetham A K, Tian W, et al. Epitaxial Growth and Properties of Metastable BiMnO3 Thin Films[J]. Applied Physics Letters, 2004, 84(1): 91-93.
[40] Solovyev I V, Pchelkina Z V. Orbital Ordering and Magnetic Interactions in BiMnO3[J]. New Journal of Physics, 2008, 10(7): 073021.
[41] Yang C H, Koo T Y, Lee S H, et al. Orbital Ordering and Enhanced Magnetic Frustration of Strained BiMnO3 Thin Films[J]. Europhysics Letters, 2006, 74(2): 348-354.
[42] Moreira Dos Santos A, Cheetham A K, Atou T, et al. Orbital Ordering as the Determinant for Ferromagnetism in Biferroic BiMnO3[J]. Physical Review B, 2002, 66(6): 064425.
[43] Gonchar L E, Nikiforov A E. Crucial Role of Orbital Structure in Formation of Frustrated Magnetic Structure in BiMnO3[J]. Physical Review B, 2013, 88(9): 094401.
[44] Montanari E, Calestani G, Righi L, et al. Structural Anomalies at the Magnetic Transition in Centrosymmetric BiMnO3[J]. Physical Review B, 2007, 75(22): 220101.
[45] Luca G M D, Preziosi D, Chiarella F, et al. Ferromagnetism and Ferroelectricity in Epitaxial BiMnO3 Ultra-Thin Films[J]. Applied Physics Letters, 2013, 103(6): 062902.
[46] Atou T, Chiba H, Ohoyama K, et al. Structure Determination of Ferromagnetic Perovskite BiMnO3[J]. Journal of Solid State Chemistry, 1999, 145(2): 639-642.
[47] Seshadri R, Hill N A. Visualizing the Role of Bi 6s “Lone Pairs” in the Off-Center Distortion in Ferromagnetic BiMnO3[J]. Chemistry of Materials, 2001, 13(9): 2892-2899.
[48] Hill N A, Rabe K M. First-Principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite[J]. Physical Review B, 1999, 59(13): 8759-8769.
[49] Moreira Dos Santos A, Parashar S, Raju A R, et al. Evidence for the Likely Occurrence of Magnetoferroelectricity in the Simple Perovskite, BiMnO3[J]. Solid State Communications, 2002, 122(1): 49-52.
[50] Chi Z H, Yang H, Feng S M, et al. Room-Temperature Ferroelectric Polarization in Multiferroic BiMnO3[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): e358-e360.
[51] Baettig P, Seshadri R, Spaldin N A. Anti-Polarity in Ideal BiMnO3[J]. Journal of the American Chemical Society, 2007, 129(32): 9854-9855.
[52] Yang N, Yuan Y, Guan Z, et al. Structure Dependence of Ferroelectricity in High Quality BiMnO3 Epitaxial Films[J]. Physical Review Materials, 2019, 3(5): 054402.
[53] De Luca G M, Perroni C A, Di Capua R, et al. Strain and Electric Field Control of the Orbital and Spin Order in Multiferroic BiMnO3[J]. The European Physical Journal Plus, 2020, 135(6): 473.
[54] Sharan A, Lettieri J, Jia Y, et al. Bismuth Manganite: A Multiferroic with a Large Nonlinear Optical Response[J]. Physical Review B, 2004, 69(21): 214109.
[55] Mickel P R, Jeen H, Kumar P, et al. Proximate Transition Temperatures Amplify Linear Magnetoelectric Coupling in Strain-Disordered Multiferroic BiMnO3[J]. Physical Review B, 2016, 93(13): 134205.
[56] Grizalez M, Martinez E, Caicedo J, et al. Occurrence of Ferroelectricity in Epitaxial BiMnO3 Thin Films[J]. Microelectronics Journal, 2008, 39(11): 1308-1310.
[57] Jeen H, Singhbhalla G, Mickel P R, et al. Growth and Characterization of Multiferroic BiMnO3 Thin Films[J]. Journal of Applied Physics, 2011, 109(7): 074104.
[58] Son J, Shin Y-H. Multiferroic BiMnO3 Thin Films with Double SrTiO3 Buffer Layers[J]. Applied Physics Letters, 2008, 93(6): 062902.
[59] Diéguez O, Íñiguez J. Epitaxial Phases of BiMnO3 from First Principles[J]. Physical Review B, 2015, 91(18): 184113.
[60] Nan C-W, Bichurin M I, Dong S, et al. Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions[J]. Journal of Applied Physics, 2008, 103(3): 031101.
[61] Shuxiang D, Jie-Fang L, Viehland D. Longitudinal and Transverse Magnetoelectric Voltage Coefficients of Magnetostrictive/Piezoelectric Laminate Composite: Theory[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(10): 1253-1261.
[62] Nan C W, Li M, Huang J H. Calculations of Giant Magnetoelectric Effects in Ferroic Composites of Rare-Earth-Iron Alloys and Ferroelectric Polymers[J]. Physical Review B, 2001, 63(14): 144415.
[63] Zheng H, Wang J, Lofland S E, et al. Multiferroic BaTiO3-CoFe2O4 Nanostructures[J]. Science, 2004, 303(5658): 661-663.
[64] Lorenz M, Lazenka V, Schwinkendorf P, et al. Multiferroic BaTiO3–BiFeO3 Composite Thin Films and Multilayers: Strain Engineering and Magnetoelectric Coupling[J]. Journal of Physics D: Applied Physics, 2014, 47(13): 135303.
[65] Wang Y, Hu J, Lin Y, et al. Multiferroic Magnetoelectric Composite Nanostructures[J]. NPG Asia Materials, 2010, 2(2): 61-68.
[66] Thiele C, Dörr K, Bilani O, et al. Influence of Strain on the Magnetization and Magnetoelectric Effect in La0.7A0.3MnO3∕PMN−PT(001)(A=Sr,Ca)[J]. Physical Review B, 2007, 75(5): 054408.
[67] Lei N, Devolder T, Agnus G, et al. Strain-Controlled Magnetic Domain Wall Propagation in Hybrid Piezoelectric/Ferromagnetic Structures[J]. Nature Communications, 2013, 4(1): 1378.
[68] Heron J T, Bosse J L, He Q, et al. Deterministic Switching of Ferromagnetism at Room Temperature Using an Electric Field[J]. Nature, 2014, 516(7531): 370-373.
[69] Bibes M, Barthélémy A. Towards a magnetoelectric memory[J]. Nature Materials, 2008, 7(6): 425-426.
[70] Molegraaf H J A, Hoffman J, Vaz C a F, et al. Magnetoelectric Effects in Complex Oxides with Competing Ground States[J]. Advanced Materials, 2009, 21(34): 3470-3474.
[71] Duan C-G, Jaswal S S, Tsymbal E Y. Predicted Magnetoelectric Effect in Fe/BaTiO3 Multilayers: Ferroelectric Control of Magnetism[J]. Physical Review Letters, 2006, 97(4): 047201.
[72] Lee J, Sai N, Cai T, et al. Interfacial Magnetoelectric Coupling in Tricomponent Superlattices[J]. Physical Review B, 2010, 81(14): 144425.
[73] Choi T, Lee S, Choi Y J, et al. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3[J]. Science, 2009, 324(5923): 63-66.
[74] Zeches R J, Rossell M D, Zhang J X, et al. A Strain-Driven Morphotropic Phase Boundary in BiFeO3[J]. Science, 2009, 326(5955): 977-980.
[75] Zhang J X, He Q, Trassin M, et al. Microscopic Origin of the Giant Ferroelectric Polarization in Tetragonal-Like BiFeO3[J]. Physical Review Letters, 2011, 107(14): 147602.
[76] Chen D, Chen Z, He Q, et al. Interface Engineering of Domain Structures in BiFeO3 Thin Films[J]. Nano Letters, 2017, 17(1): 486-493.
[77] Gajek M, Bibes M, Fusil S, et al. Tunnel Junctions with Multiferroic Barriers[J]. Nature Materials, 2007, 6(4): 296-302.
[78] Pálová L, Chandra P, Rabe K M. Multiferroic BiFeO3-BiMnO3 Nanoscale Checkerboard from First Principles[J]. Physical Review B, 2010, 82(7): 075432.
[79] Palova L, Chandra P, Rabe K M. Magnetostructural Effect in the Multiferroic BiFeO3-BiMnO3 Checkerboard from First Principles[J]. Physical Review Letters, 2010, 104(3): 037202.
[80] Yang Y, Bellaiche L, Íñiguez J. Exploiting Interfacial and Size Effects to Construct Oxide Superlattices with Robust and Tunable Magnetoelectric Properties at Room Temperature[J]. Physical Review B, 2015, 91(7): 075423.
[81] Xiong J, Matias V, Tao B W, et al. Ferroelectric and Ferromagnetic Properties of Epitaxial BiFeO3-BiMnO3 Films on Ion-Beam-Assisted Deposited TiN Buffered Flexible Hastelloy[J]. Journal of Applied Physics, 2014, 115(17): 17D913.
[82] Chakrabartty J, Nechache R, Harnagea C, et al. Enhanced Photovoltaic Properties in Bilayer BiFeO3/Bi-Mn-O Thin Films[J]. Nanotechnology, 2016, 27(21): 215402.
[83] Xu Q, Sheng Y, Khalid M, et al. Magnetic Interactions in BiFe0.5Mn0.5O3 Films and BiFeO3/BiMnO3 Superlattices[J]. Scientific Reports, 2015, 5(1): 9093.
[84] Choi E-M, Kleibeuker J E, Fix T, et al. Interface-Coupled BiFeO3/BiMnO3 Superlattices with Magnetic Transition Temperature up to 410 K[J]. Advanced Materials Interfaces, 2016, 3(5): 1500597.
[85] Barman R, Kaur D. Leakage Current Behavior of BiFeO3/BiMnO3 Multilayer Fabricated by Pulsed Laser Deposition[J]. Journal of Alloys and Compounds, 2015, 644: 506-512.
[86] Xu Q, Sheng Y, He M, et al. The Multiferroic Properties of BiFe0.5Mn0.5O3 and BiFeO3/BiMnO3 Superlattice Films[J]. Journal of Applied Physics, 2015, 117(17): 17D911.
[87] Lee J H, Ke X, Misra R, et al. Adsorption-Controlled Growth of BiMnO3 Films by Molecular-Beam Epitaxy[J]. Applied Physics Letters, 2010, 96(26): 262905.
[88] Vaz C A, Hoffman J, Ahn C H, et al. Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures[J]. Advanced Materials, 2010, 22(26‐27): 2900-2918.
[89] Solovyev I V, Pchelkina Z V. Magnetic-Field Control of the Electric Polarization in BiMnO3[J]. Physical Review B, 2010, 82(9): 094425.
[90] Schlom D G, Chen L-Q, Fennie C J, et al. Elastic Strain Engineering of Ferroic Oxides[J]. MRS Bulletin, 2014, 39(2): 118-130.
[91] Welser J, Hoyt J L, Gibbons J F. Electron Mobility Enhancement in Strained-Si N-Type Metal-Oxide-Semiconductor Field-Effect Transistors[J]. IEEE Electron Device Letters, 1994, 15(3): 100-102.
[92] Shockley W, Bardeen J. Energy Bands and Mobilities in Monatomic Semiconductors[J]. Physical Review, 1950, 77(3): 407-408.
[93] Bozovic I, Logvenov G, Belca I, et al. Epitaxial Strain and Superconductivity in La2-xSrxCuO4 Thin Films[J]. Physical Review Letters, 2002, 89(10): 107001.
[94] Beach R S, Borchers J A, Matheny A, et al. Enhanced Curie Temperatures and Magnetoelastic Domains in Dy/Lu Superlattices and Films[J]. Physical Review Letters, 1993, 70(22): 3502-3505.
[95] Lee J H, Fang L, Vlahos E, et al. A Strong Ferroelectric Ferromagnet Created by Means of Spin–Lattice Coupling[J]. Nature, 2010, 466(7309): 954-958.
[96] Haeni J H, Irvin P, Chang W, et al. Room-Temperature Ferroelectricity in Strained SrTiO3[J]. Nature, 2004, 430(7001): 758-761.
[97] Choi K J, Biegalski M, Li Y L, et al. Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films[J]. Science, 2004, 306(5698): 1005-1009.
[98] Choi E M, Kursumovic A, Lee O J, et al. Ferroelectric Sm-Doped BiMnO3 Thin Films with Ferromagnetic Transition Temperature Enhanced to 140 K[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 14836-14843.
[99] Schlom D G, Chen L-Q, Eom C-B, et al. Strain Tuning of Ferroelectric Thin Films[J]. Annual Review of Materials Research, 2007, 37(1): 589-626.
[100] Béa H, Dupé B, Fusil S, et al. Evidence for Room-Temperature Multiferroicity in a Compound with a Giant Axial Ratio[J]. Physical Review Letters, 2009, 102(21): 217603.
[101] Son J Y, Kim B G, Kim C H, et al. Writing Polarization Bits on the Multiferroic BiMnO3 Thin Film Using Kelvin Probe Force Microscope[J]. Applied Physics Letters, 2004, 84(24): 4971-4973.
[102] Eerenstein W, Morrison F D, Scott J F, et al. Growth of Highly Resistive BiMnO3 Films[J]. Applied Physics Letters, 2005, 87(10): 101906.
[103] Acharya S A, Gaikwad V M, Kulkarni S K, et al. Low Pressure Synthesis of BiMnO3 Nanoparticles: Anomalous Structural and Magnetic Features[J]. Journal of Materials Science, 2016, 52(1): 458-466.
[104] Yan Y, Sun B, Ma D J. Resistive Switching Memory of Single BiMnO3+δ Nanorods[J]. Journal of Materials Science: Materials in Electronics, 2015, 27(1): 512-516.
[105] Stranick M A. Mn2O3 by XPS[J]. Surface Science Spectra, 1999, 6(1): 39-46.
[106] Di Castro V, Polzonetti G. XPS Study of MnO Oxidation[J]. Journal of Electron Spectroscopy and Related Phenomena, 1989, 48(1): 117-123.
[107] Shibagaki S, Fukushima K. XPS Analysis on Nb–SrTiO3 Thin Films Deposited with Pulsed Laser Ablation Technique[J]. Journal of the European Ceramic Society, 1999, 19(6): 1423-1426.
[108] Salluzzo M, Gariglio S, Stornaiuolo D, et al. Origin of Interface Magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 Heterostructures[J]. Physical Review Letters, 2013, 111(8): 087204.
[109] Es-Souni M, Zhang N, Iakovlev S, et al. Thickness and Erbium Doping Effects on the Electrical Properties of Lead Zirconate Titanate Thin Films[J]. Thin Solid Films, 2003, 440(1): 26-34.
[110] Balke N, Maksymovych P, Jesse S, et al. Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy[J]. ACS Nano, 2015, 9(6): 6484-6492.
[111] Vasudevan R K, Balke N, Maksymovych P, et al. Ferroelectric or Non-Ferroelectric: Why so Many Materials Exhibit “Ferroelectricity” on the Nanoscale[J]. Applied Physics Reviews, 2017, 4(2): 021302.
[112] Gruverman A, Alexe M, Meier D. Piezoresponse Force microscopy and Nanoferroic Phenomena[J]. Nature Communications, 2019, 10(1): 1661.
[113] Yao J, Ye M, Sun Y, et al. Atomic-Scale Insight into the Reversibility of Polar Order in Ultrathin Epitaxial Nb:SrTiO3/BaTiO3 Heterostructure and Its Implication to Resistive Switching[J]. Acta Materialia, 2020, 188: 23-29.
[114] Guan Z, Jiang Z-Z, Tian B-B, et al. Identifying Intrinsic Ferroelectricity of Thin Film with Piezoresponse Force Microscopy[J]. AIP Advances, 2017, 7(9): 095116.
[115] Yu J, Esfahani E N, Zhu Q, et al. Quadratic Electromechanical Strain in Silicon Investigated by Scanning Probe Microscopy[J]. Journal of Applied Physics, 2018, 123(15): 155104.
[116] Wang S, Wang H, Jian J, et al. Effects of LNO Buffer Layers on Electrical Properties of BFO-PT Thin Films on Stainless Steel Substrates[J]. Journal of Alloys and Compounds, 2019, 784: 231-236.
[117] Lee K, Lee T Y, Yang S M, et al. Ferroelectricity in Epitaxial Y-Doped HfO2 Thin Film Integrated on Si Substrate[J]. Applied Physics Letters, 2018, 112(20): 202901.
[118] Lee C-C, Wu J-M. Thickness-Dependent Retention Behaviors and Ferroelectric Properties of BiFeO3 Thin Films on BaPbO3 Electrodes[J]. Applied Physics Letters, 2007, 91(10): 102906.
[119] Ganpule C S, Nagarajan V, Ogale S B, et al. Domain Nucleation and Relaxation Kinetics in Ferroelectric Thin Films[J]. Applied Physics Letters, 2000, 77(20): 3275-3277.
[120] Pradhan S, Rath M, David A, et al. Thickness-Dependent Domain Relaxation Dynamics Study in Epitaxial K0.5Na0.5NbO3 Ferroelectric Thin Films[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 36407-36415.
[121] Jung M H, Yang I K, Jeong Y H. Investigation of the Magnetic and the Ferroelectric Properties of BiMnO3 Thin Films[J]. Journal of the Korean Physical Society, 2013, 63(3): 624-626.
[122] Grizalez M, Delgado E, Gómez M E, et al. Magnetic and Electrical Properties of BiMnO3 Thin Films[J]. Physica Status Solidi C, 2007, 4(11): 4203-4208.
[123] Gan Q, Rao R A, Eom C B, et al. Direct Measurement of Strain Effects on Magnetic and Electrical Properties of Epitaxial SrRuO3 Thin Films[J]. Applied Physics Letters, 1998, 72(8): 978-980.
[124] Lu Z, Liu J, Feng J, et al. Synthesis of Single-Crystal La0.67Sr0.33MnO3 Freestanding Films with Different Crystal-Orientation[J]. APL Materials, 2020, 8(5): 051105.
[125] Yu P, Lee J S, Okamoto S, et al. Interface Ferromagnetism and Orbital Reconstruction in BiFeO3-La0.7Sr0.3MnO3 Heterostructures[J]. Physical Review Letters, 2010, 105(2): 027201.
[126] Huijben M, Yu P, Martin L W, et al. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces[J]. Advanced Materials, 2013, 25(34): 4739-4745.
[127] Ding J F, Lebedev O I, Turner S, et al. Interfacial Spin Glass State and Exchange Bias in Manganite Bilayers with Competing Magnetic Orders[J]. Physical Review B, 2013, 87(5): 054428.
[128] Jaafar M, Pablo-Navarro J, Berganza E, et al. Customized MFM Probes Based on Magnetic Nanorods[J]. Nanoscale, 2020, 12(18): 10090-10097.
[129] Talapatra A, Mohanty J. Laser Induced Local Modification of Magnetic Domain in Co/Pt Multilayer[J]. Journal of Magnetism and Magnetic Materials, 2016, 418: 224-230.
[130] Ausanio G, Iannotti V, Lanotte L, et al. Weak Stripe Domains in Co/Fe Multilayers[J]. Journal of Magnetism and Magnetic Materials, 2001, 226-230: 1740-1742.
[131] Hu S, Cazorla C, Xiang F, et al. Strain Control of Giant Magnetic Anisotropy in Metallic Perovskite SrCoO3-δ Thin Films[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22348-22355.
[132] Li L, Boullay P, Cheng J, et al. Self-Assembled Two-Dimensional Layered Oxide Supercells with Modulated Layer Stacking and Tunable Physical Properties[J]. Materials Today Nano, 2019, 6: 100037.
[133] Li L, Boullay P, Lu P, et al. Novel Layered Supercell Structure from Bi2AlMnO6 for Multifunctionalities[J]. Nano Letters, 2017, 17(11): 6575-6582.
[134] Zhang W, Li M, Chen A, et al. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16845-16851.
[135] Li L, Cheng J, Wang H, et al. Interfacial Engineering Enabled Novel Bi-Based Layered Oxide Supercells with Modulated Microstructures and Tunable Physical Properties[J]. Crystal Growth & Design, 2019, 19(12): 7088-7095.
[136] Hu S, Han W, Hu S, et al. Voltage-Controlled Oxygen Non-Stoichiometry in SrCoO3−δ Thin Films[J]. Chemistry of Materials, 2019, 31(16): 6117-6123.
[137] Chen A, Zhou H, Bi Z, et al. A New Class of Room-Temperature Multiferroic Thin Films with Bismuth-Based Supercell Structure[J]. Advanced Materials, 2013, 25(7): 1028-1032.
[138] Li L, Zhang W, Khatkhatay F, et al. Strain and Interface Effects in a Novel Bismuth-Based Self-Assembled Supercell Structure[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11631-11636.
[139] Wong W S, Sands T, Cheung N W. Damage-Free Separation of GaN Thin Films from Sapphire Substrates[J]. Applied Physics Letters, 1998, 72(5): 599-601.
[140] Kum H S, Lee H, Kim S, et al. Heterogeneous Integration of Single-Crystalline Complex-Oxide Membranes[J]. Nature, 2020, 578(7793): 75-81.
[141] Paskiewicz D M, Sichel-Tissot R, Karapetrova E, et al. Single-Crystalline SrRuO3 Nanomembranes: A Platform for Flexible Oxide Electronics[J]. Nano Letters, 2016, 16(1): 534-542.
[142] Bakaul S R, Serrao C R, Lee M, et al. Single Crystal Functional Oxides on Silicon[J]. Nature Communications, 2016, 7(1): 10547.
[143] Zhang Y, Shen L, Liu M, et al. Flexible Quasi-Two-Dimensional CoFe2O4 Epitaxial Thin Films for Continuous Strain Tuning of Magnetic Properties[J]. ACS Nano, 2017, 11(8): 8002-8009.
[144] Eom K, Yu M, Seo J, et al. Electronically Reconfigurable Complex Oxide Heterostructure Freestanding Membranes[J]. Science Advances, 2021, 7(33): eabh1284.
[145] Lu D, Baek D J, Hong S S, et al. Synthesis of Freestanding Single-Crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-Soluble Layers[J]. Nature Materials, 2016, 15(12): 1255-1260.
[146] Hong S S, Yu J H, Lu D, et al. Two-Dimensional Limit of Crystalline Order in Perovskite Membrane Films[J]. Science Advances, 2017, 3(11): eaao5173.
[147] Ji D, Cai S, Paudel T R, et al. Freestanding Crystalline Oxide Perovskites Down to the Monolayer Limit[J]. Nature, 2019, 570(7759): 87-90.
[148] Dong G, Li S, Yao M, et al. Super-Elastic Ferroelectric Single-Crystal Membrane with Continuous Electric Dipole Rotation[J]. Science, 2019, 366(6464): 475-479.
[149] Hong S S, Gu M, Verma M, et al. Extreme Tensile Strain States in La0.7Ca0.3MnO3 Membranes[J]. Science, 2020, 368(6486): 71-76.
[150] Xu R, Huang J, Barnard E S, et al. Strain-Induced Room-Temperature Ferroelectricity in SrTiO3 Membranes[J]. Nature Communications, 2020, 11(1): 3141.
[151] Guo R, You L, Lin W, et al. Continuously Controllable Photoconductance in Freestanding BiFeO3 by the Macroscopic Flexoelectric Effect[J]. Nature Communications, 2020, 11(1): 2571.
[152] Alonso J A, Rasines I, Soubeyroux J L. Tristrontium Dialuminum Hexaoxide: an Intricate Superstructure of Perovskite[J]. Inorganic Chemistry, 1990, 29(23): 4768-4771.
[153] Chakoumakos B C, Lager G A, Fernandez-Baca J A. Refinement of the Structures of Sr3Al2O6 and the Hydrogarnet Sr3Al2(O4D4)3 by Rietveld Analysis of Neutron Powder Diffraction Data[J]. Acta Crystallographica Section C, 1992, 48(3): 414-419.
[154] Chiba H, Atou T, Syono Y. Magnetic and Electrical Properties of Bi1−xSrxMnO3: Hole-Doping Effect on Ferromagnetic Perovskite BiMnO3[J]. Journal of Solid State Chemistry, 1997, 132(1): 139-143.
[155] Ramírez-Camacho M C, Sánchez-Valdés C F, Gervacio-Arciniega J J, et al. Room Temperature Ferromagnetism and Ferroelectricity in Strained Multiferroic BiFeO3 Thin Films on La0.7Sr0.3MnO3/SiO2/Si Substrates[J]. Acta Materialia, 2017, 128: 451-464.
[156] Peng B, Peng R-C, Zhang Y-Q, et al. Phase Transition Enhanced Superior Elasticity in Freestanding Single-Crystalline Multiferroic BiFeO3 Membranes[J]. Science Advanced, 2020, 6(34): eaba5847.
[157] Zhao J, Winey J M, Gupta Y M. First-Principles Calculations of Second- and Third-Order Elastic Constants for Single Crystals of Arbitrary Symmetry[J]. Physical Review B, 2007, 75(9): 094105.
[158] Mundy J A, Brooks C M, Holtz M E, et al. Atomically Engineered Ferroic Layers Yield a Room-Temperature Magnetoelectric Multiferroic[J]. Nature, 2016, 537(7621): 523.
[159] Ramesh R, Schlom D G. Creating Emergent Phenomena in Oxide Superlattices[J]. Nature Reviews Materials, 2019, 4(4): 257-268.
[160] Ye M, Hu S, Zhu Y, et al. Electric Polarization Switching on an Atomically Thin Metallic Oxide[J]. Nano Letters, 2020, 21(1): 144-150.
[161] Dawber M, Lichtensteiger C, Cantoni M, et al. Unusual Behavior of the Ferroelectric Polarization in PbTiO3/SrTiO3 Superlattices[J]. Physical Review Letters, 2005, 95(17): 177601.
[162] Dawber M, Rabe K M, Scott J F. Physics of Thin-Film Ferroelectric Oxides[J]. Reviews of Modern Physics, 2005, 77(4): 1083-1130.
[163] Johnston K, Huang X, Neaton J B, et al. First-Principles Study of Symmetry Lowering and Polarization in BaTiO3/SrTiO3 Superlattices with in-Plane Expansion[J]. Physical Review B, 2005, 71(10): 100103.
[164] Nakhmanson S M, Rabe K M, Vanderbilt D. Predicting Polarization Enhancement in Multicomponent Ferroelectric Superlattices[J]. Physical Review B, 2006, 73(6): 060101.
[165] Lebedev O, Hamet J-F, Vantendeloo G, et al. Structure and Properties of the YBa2Cu3O7-x/LaAlO3 Superlattices[J]. Journal of Applied Physics, 2001, 90(10): 5261-5267.
[166] Chen Z, Chen Z, Kuo C-Y, et al. Complex Strain Evolution of Polar and Magnetic Order in Multiferroic BiFeO3 Thin Films[J]. Nature Communications, 2018, 9(1): 3764.
[167] Czekaj S, Nolting F, Heyderman L J, et al. Sign Dependence of the X-ray Magnetic Linear Dichroism on the Antiferromagnetic Spin Axis in LaFeO3 Thin Films[J]. Physical Review B, 2006, 73(2): 020401.
[168] Gilbert B, Frazer B H, Belz A, et al. Multiple Scattering Calculations of Bonding and X-ray Absorption Spectroscopy of Manganese Oxides[J]. The Journal of Physical Chemistry A, 2003, 107(16): 2839-2847.
[169] Jia C-L, Nagarajan V, He J-Q, et al. Unit-Cell Scale Mapping of Ferroelectricity and Tetragonality in Epitaxial Ultrathin Ferroelectric Films[J]. Nature Materials, 2007, 6(1): 64-69.
[170] Wang H, Liu Z R, Yoong H Y, et al. Direct Observation of Room-Temperature Out-of-Plane Ferroelectricity and Tunneling Electroresistance at the Two-Dimensional Limit[J]. Nature Communications, 2018, 9(1): 3319.
[171] Dho J Q, X. Kim, H. Macmanus-Driscoll, J. L Blamire, M. G. Large Electric Polarization and Exchange Bias in Multiferroic BiFeO3[J]. Advanced Materials, 2006, 18(11): 1445-1448.
[172] Yi D, Liu J, Okamoto S, et al. Tuning the Competition between Ferromagnetism and Antiferromagnetism in a Half-Doped Manganite through Magnetoelectric Coupling[J]. Physical Review Letters, 2013, 111(12): 127601.
[173] Xiong J, Lei T, Chu J, et al. Ferromagnetic–Antiferromagnetic Coupling by Distortion of Fe/Mn Oxygen Octahedrons in (BiFeO3)m(La0.7Sr0.3MnO3)n Superlattices[J]. Small, 2017, 13(18): 1700107.
[174] Bi L, Taussig A R, Kim H-S, et al. Structural, Magnetic, and Optical Properties of BiFeO3 and Bi2FeMnO6 Epitaxial Thin Films: An Experimental and First-Principles Study[J]. Physical Review B, 2008, 78(10): 104106.
[175] Novotny Z, Mulakaluri N, Edes Z, et al. Probing the Surface Phase Diagram of Fe3O4 (001) Towards the Fe-Rich Limit: Evidence for Progressive Reduction of the Surface[J]. Physical Review B, 2013, 87(19): 195410.
修改评论