中文版 | English
题名

Lung Radiomics Features Selection for COPD Stage Classification Based on Auto-Metric Graph Neural Network

作者
通讯作者Chen,Rongchang; Kang,Yan
发表日期
2022-10-01
DOI
发表期刊
EISSN
2075-4418
卷号12期号:10
摘要
Chronic obstructive pulmonary disease (COPD) is a preventable, treatable, progressive chronic disease characterized by persistent airflow limitation. Patients with COPD deserve special consideration regarding treatment in this fragile population for preclinical health management. Therefore, this paper proposes a novel lung radiomics combination vector generated by a generalized linear model (GLM) and Lasso algorithm for COPD stage classification based on an auto-metric graph neural network (AMGNN) with a meta-learning strategy. Firstly, the parenchyma images were segmented from chest high-resolution computed tomography (HRCT) images by ResU-Net. Second, lung radiomics features are extracted from the parenchyma images by PyRadiomics. Third, a novel lung radiomics combination vector (3 + 106) is constructed by the GLM and Lasso algorithm for determining the radiomics risk factors (K = 3) and radiomics node features (d = 106). Last, the COPD stage is classified based on the AMGNN. The results show that compared with the convolutional neural networks and machine learning models, the AMGNN based on constructed novel lung radiomics combination vector performs best, achieving an accuracy of 0.943, precision of 0.946, recall of 0.943, F1-score of 0.943, and ACU of 0.984. Furthermore, it is found that our method is effective for COPD stage classification.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Natural Science Foundation of Guangdong Province[2019A1515011382];National Natural Science Foundation of China[62071311];Scientific Research Fund of Liaoning Provincial Education Department[JL201919];
WOS研究方向
General & Internal Medicine
WOS类目
Medicine, General & Internal
WOS记录号
WOS:000872676900001
出版者
Scopus记录号
2-s2.0-85140767309
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/407127
专题南方科技大学第一附属医院
作者单位
1.College of Medicine and Biological Information Engineering,Northeastern University,Shenyang,110169,China
2.College of Health Science and Environmental Engineering,Shenzhen Technology University,Shenzhen,518118,China
3.School of Applied Technology,Shenzhen University,Shenzhen,518060,China
4.Department of Radiology,the First Affiliated Hospital of Guangzhou Medical University,Guangzhou,510120,China
5.Shenzhen Institute of Respiratory Diseases,Shenzhen People’s Hospital,Shenzhen,518001,China
6.The Second Clinical Medical College,Jinan University,Guangzhou,518001,China
7.The First Affiliated Hospital,Southern University of Science and Technology,Shenzhen,518001,China
8.Engineering Research Centre of Medical Imaging and Intelligent Analysis,Ministry of Education,Shenyang,110169,China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Yang,Yingjian,Wang,Shicong,Zeng,Nanrong,et al. Lung Radiomics Features Selection for COPD Stage Classification Based on Auto-Metric Graph Neural Network[J]. Diagnostics,2022,12(10).
APA
Yang,Yingjian.,Wang,Shicong.,Zeng,Nanrong.,Duan,Wenxin.,Chen,Ziran.,...&Kang,Yan.(2022).Lung Radiomics Features Selection for COPD Stage Classification Based on Auto-Metric Graph Neural Network.Diagnostics,12(10).
MLA
Yang,Yingjian,et al."Lung Radiomics Features Selection for COPD Stage Classification Based on Auto-Metric Graph Neural Network".Diagnostics 12.10(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Yingjian]的文章
[Wang,Shicong]的文章
[Zeng,Nanrong]的文章
百度学术
百度学术中相似的文章
[Yang,Yingjian]的文章
[Wang,Shicong]的文章
[Zeng,Nanrong]的文章
必应学术
必应学术中相似的文章
[Yang,Yingjian]的文章
[Wang,Shicong]的文章
[Zeng,Nanrong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。