中文版 | English
题名

An Energy-Efficient Mixed-Bitwidth Systolic Accelerator for NAS-Optimized Deep Neural Networks

作者
发表日期
2022
DOI
发表期刊
ISSN
1063-8210
EISSN
1557-9999
卷号PP期号:99页码:1-13
摘要
Optimized deep neural network (DNN) models and energy-efficient hardware designs are of great importance in edge-computing applications. The neural architecture search (NAS) methods are employed for DNN model optimization with mixed-bitwidth networks. To satisfy the computation requirements, mixed-bitwidth convolution accelerators are highly desired for low-power and high-throughput performance. There exist several methods to support mixed-bitwidth multiply-accumulate (MAC) operations in DNN accelerator designs. The low-bitwidth-combination (LBC) method improves the low-bitwidth throughput with a large hardware cost. The high-bitwidth-split (HBS) method minimizes the additional logic gates for configuration. However, the throughput performance in the low-bitwidth mode is poor. In this work, a bit-split-and-combination (BSC) systolic accelerator is proposed. The BSC-based MAC unit is designed to support mixed-bitwidth operations with the best overall performance. Besides, interprocessing element (PE) systolic and intra-PE paralleled dataflow not only improves throughput performance in mixed-bitwidth modes, but also saves power performance for data transmission. The proposed work is designed and synthesized in a 28-nm process. The BSC MAC unit achieves a maximum 2.08 $\times$ and 1.75 $\times$ energy efficiency improvement than the HBS and LBC unit, respectively. Compared with the state-of-the-art accelerators, the proposed work also achieves excellent energy-efficient performance with 20.02, 23.55, and 30.17 TOPS/W on mixed-bitwidth VGG-16, ResNet-18, and LeNet-5 benchmarks at 0.6 V, respectively.
关键词
相关链接[Scopus记录]
语种
英语
学校署名
第一
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85140753011
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9920733
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/407146
专题工学院_深港微电子学院
工学院_计算机科学与工程系
作者单位
1.Ministry of Education, School of Microelectronics and the Engineering Research Center of Integrated Circuits for Next-Generation Communications, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, University of California at Merced, Merced, CA, USA
3.Department of Communications and Computer Engineering, Kyoto University, Kyoto, Japan
4.School of Microelectronics, Fudan University, Shanghai, China
5.Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
第一作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Mao,Wei,Dai,Liuyao,Li,Kai,et al. An Energy-Efficient Mixed-Bitwidth Systolic Accelerator for NAS-Optimized Deep Neural Networks[J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,2022,PP(99):1-13.
APA
Mao,Wei.,Dai,Liuyao.,Li,Kai.,Cheng,Quan.,Wang,Yuhang.,...&Yu,Hao.(2022).An Energy-Efficient Mixed-Bitwidth Systolic Accelerator for NAS-Optimized Deep Neural Networks.IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,PP(99),1-13.
MLA
Mao,Wei,et al."An Energy-Efficient Mixed-Bitwidth Systolic Accelerator for NAS-Optimized Deep Neural Networks".IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS PP.99(2022):1-13.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mao,Wei]的文章
[Dai,Liuyao]的文章
[Li,Kai]的文章
百度学术
百度学术中相似的文章
[Mao,Wei]的文章
[Dai,Liuyao]的文章
[Li,Kai]的文章
必应学术
必应学术中相似的文章
[Mao,Wei]的文章
[Dai,Liuyao]的文章
[Li,Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。