中文版 | English
题名

Multi-Learner Based Deep Meta-Learning for Few-Shot Medical Image Classification

作者
发表日期
2023-01
DOI
发表期刊
ISSN
2168-2194
EISSN
2168-2208
卷号PP期号:99页码:1-11
摘要

Few-shot learning (FSL) is promising in the field of medical image analysis due to high cost of establishing high-quality medical datasets. Many FSL approaches have been proposed in natural image scenes. However, present FSL methods are rarely evaluated on medical images and the FSL technology applicable to medical scenarios need to be further developed. Meta-learning has supplied an optional framework to address the challenging FSL setting. In this paper, we propose a novel multi-learner based FSL method for multiple medical image classification tasks, combining meta-learning with transfer-learning and metric-learning. Our designed model is composed of three learners, including auto-encoder, metric-learner and task-learner. In transfer-learning, all the learners are trained on the base classes. In the ensuing meta-learning, we leverage multiple novel tasks to fine-tune the metric-learner and task-learner in order to fast adapt to unseen tasks. Moreover, to further boost the learning efficiency of our model, we devised real-time data augmentation and dynamic Gaussian disturbance soft label (GDSL) scheme as effective generalization strategies of few-shot classification tasks. We have conducted experiments for three-class few-shot classification tasks on three newly-built challenging medical benchmarks, BLOOD, PATH and CHEST. Extensive comparisons to related works validated that our method achieved top performance both on homogeneous medical datasets and cross-domain datasets.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
WOS记录号
WOS:000910611800001
EI入藏号
20224413035474
EI主题词
Classification (of information) ; Deep learning ; Diagnosis ; Image analysis ; Image classification ; Job analysis ; Learning systems ; Medical imaging
EI分类号
Biomedical Engineering:461.1 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Imaging Techniques:746 ; Information Sources and Analysis:903.1 ; Quality Assurance and Control:913.3
Scopus记录号
2-s2.0-85140750687
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9921265
引用统计
被引频次[WOS]:20
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/407147
专题工学院_计算机科学与工程系
工学院_生物医学工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Jiang,Hongyang,Gao,Mengdi,Li,Heng,et al. Multi-Learner Based Deep Meta-Learning for Few-Shot Medical Image Classification[J]. IEEE Journal of Biomedical and Health Informatics,2023,PP(99):1-11.
APA
Jiang,Hongyang,Gao,Mengdi,Li,Heng,Jin,Richu,Miao,Hanpei,&Liu,Jiang.(2023).Multi-Learner Based Deep Meta-Learning for Few-Shot Medical Image Classification.IEEE Journal of Biomedical and Health Informatics,PP(99),1-11.
MLA
Jiang,Hongyang,et al."Multi-Learner Based Deep Meta-Learning for Few-Shot Medical Image Classification".IEEE Journal of Biomedical and Health Informatics PP.99(2023):1-11.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Hongyang]的文章
[Gao,Mengdi]的文章
[Li,Heng]的文章
百度学术
百度学术中相似的文章
[Jiang,Hongyang]的文章
[Gao,Mengdi]的文章
[Li,Heng]的文章
必应学术
必应学术中相似的文章
[Jiang,Hongyang]的文章
[Gao,Mengdi]的文章
[Li,Heng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。