中文版 | English
题名

Priori-guided and data-driven hybrid model for wind power forecasting

作者
通讯作者Liu, Guo-Ping
发表日期
2022
DOI
发表期刊
ISSN
0019-0578
EISSN
1879-2022
卷号134页码:380-395
摘要
To overcome the high uncertainty and randomness of wind and enable the grid to optimize advance preparation, a priori-guided and data-driven hybrid method is proposed to provide accurate and reasonable wind power forecasting results. Fuzzy C-Means (FCM) clustering algorithm is used first to recognize the characteristics of the weather in different regions. Then, for the purpose of making full use of both priori information and collected measured data, a three-stage hierarchical framework is designed. First, via fuzzy inference and dimension reduction of Numerical Weather Prediction (NWP), more applicable wind speed information is obtained. Second, the accessible wind power generation patterns are served as a guide for mining the actual power curve. Third, the forecasted power is derived through the recorded data and the predictable wind conditions via data-driven model. This forecasting framework ingeniously introduces a gateway that can import priori knowledge to steer the iterative learning, thus possessing both adaptive learning ability and Volterra polynomial representation, and can present forecasted outcomes with robustness, accuracy and interpretability. Finally, a real-world dataset of a wind farm as well as an open source dataset are used to verify the performance of the proposed forecasting method. Results of the ablation analyses and comparative experiments demonstrate that the introduction of domain knowledge improves the forecasting performance.

© 2022 ISA

关键词
相关链接[来源记录]
收录类别
EI ; SCI
语种
英语
学校署名
通讯
资助项目
This work was supported in part by the National Natural Science Foundation of China under Grants 62173255 , 62188101 and 62073247 .
WOS研究方向
Automation & Control Systems ; Engineering ; Instruments & Instrumentation
WOS类目
Automation & Control Systems ; Engineering, Multidisciplinary ; Instruments & Instrumentation
WOS记录号
WOS:000952063400001
出版者
EI入藏号
20223412613071
EI主题词
Clustering Algorithms ; Electric Power Generation ; Iterative Methods ; Machine Learning ; Weather Forecasting ; Wind Power ; Wind Speed
EI分类号
Meteorology:443 ; Wind Power (Before 1993, Use Code 611 ):615.8 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Expert Systems:723.4.1 ; Information Sources And Analysis:903.1 ; Numerical Methods:921.6
ESI学科分类
ENGINEERING
来源库
EV Compendex
引用统计
被引频次[WOS]:17
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411569
专题工学院_系统设计与智能制造学院
作者单位
1.Department of Artificial Intelligence and Automation, School of Electrical Engineering and Automation, Wuhan University, Wuhan; 430072, China
2.Center for Control Science and Technology, Southern University of Science and Technology, Shenzhen; 518055, China
通讯作者单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Huang, Yi,Liu, Guo-Ping,Hu, Wenshan. Priori-guided and data-driven hybrid model for wind power forecasting[J]. ISA TRANSACTIONS,2022,134:380-395.
APA
Huang, Yi,Liu, Guo-Ping,&Hu, Wenshan.(2022).Priori-guided and data-driven hybrid model for wind power forecasting.ISA TRANSACTIONS,134,380-395.
MLA
Huang, Yi,et al."Priori-guided and data-driven hybrid model for wind power forecasting".ISA TRANSACTIONS 134(2022):380-395.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Priori-guided and da(6192KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Yi]的文章
[Liu, Guo-Ping]的文章
[Hu, Wenshan]的文章
百度学术
百度学术中相似的文章
[Huang, Yi]的文章
[Liu, Guo-Ping]的文章
[Hu, Wenshan]的文章
必应学术
必应学术中相似的文章
[Huang, Yi]的文章
[Liu, Guo-Ping]的文章
[Hu, Wenshan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。