中文版 | English
题名

Deep Learning for Android Malware Defenses: a Systematic Literature Review

作者
发表日期
2022
DOI
发表期刊
ISSN
0360-0300
EISSN
1557-7341
卷号55期号:8页码:1-36
摘要
Malicious applications (particularly those targeting the Android platform) pose a serious threat to developers and end-users. Numerous research efforts have been devoted to developing effective approaches to defend against Android malware. However, given the explosive growth of Android malware and the continuous advancement of malicious evasion technologies like obfuscation and reflection, Android malware defense approaches based on manual rules or traditional machine learning may not be effective. In recent years, a dominant research field called deep learning (DL), which provides a powerful feature abstraction ability, has demonstrated a compelling and promising performance in a variety of areas, like natural language processing and computer vision. To this end, employing DL techniques to thwart Android malware attacks has recently garnered considerable research attention. Yet, no systematic literature review focusing on DL approaches for Android malware defenses exists. In this article, we conducted a systematic literature review to search and analyze how DL approaches have been applied in the context of malware defenses in the Android environment. As a result, a total of 132 studies covering the period 2014-2021 were identified. Our investigation reveals that, while the majority of these sources mainly consider DL-based Android malware detection, 53 primary studies (40.1%) design defense approaches based on other scenarios. This review also discusses research trends, research focuses, challenges, and future research directions in DL-based Android malware defenses.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
WOS研究方向
Computer Science
WOS类目
Computer Science, Theory & Methods
WOS记录号
WOS:000905475300001
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
人工提交
引用统计
被引频次[WOS]:24
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411680
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Monash University
2.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Yue Liu,Chakkrit Tantithamthavorn,Li Li,et al. Deep Learning for Android Malware Defenses: a Systematic Literature Review[J]. ACM Computing Surveys,2022,55(8):1-36.
APA
Yue Liu,Chakkrit Tantithamthavorn,Li Li,&Yepang Liu.(2022).Deep Learning for Android Malware Defenses: a Systematic Literature Review.ACM Computing Surveys,55(8),1-36.
MLA
Yue Liu,et al."Deep Learning for Android Malware Defenses: a Systematic Literature Review".ACM Computing Surveys 55.8(2022):1-36.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yue Liu]的文章
[Chakkrit Tantithamthavorn]的文章
[Li Li]的文章
百度学术
百度学术中相似的文章
[Yue Liu]的文章
[Chakkrit Tantithamthavorn]的文章
[Li Li]的文章
必应学术
必应学术中相似的文章
[Yue Liu]的文章
[Chakkrit Tantithamthavorn]的文章
[Li Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。