中文版 | English
题名

Local characteristic decomposition based central-upwind scheme

作者
通讯作者Chu,Shaoshuai
发表日期
2023-01-15
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号473
摘要
We propose novel less diffusive schemes for conservative one- and two-dimensional hyperbolic systems of nonlinear partial differential equations (PDEs). The main challenges in the development of accurate and robust numerical methods for the studied systems come from the complicated wave structures, such as shocks, rarefactions and contact discontinuities, arising even for smooth initial conditions. In order to reduce the diffusion in the original central-upwind schemes, we use a local characteristic decomposition procedure to develop a new class of central-upwind schemes. We apply the developed schemes to the one- and two-dimensional Euler equations of gas dynamics to illustrate the performance on a variety of examples. The obtained numerical results clearly demonstrate that the proposed new schemes outperform the original central-upwind schemes.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[12111530004];National Natural Science Foundation of China[12171226];Deutsche Forschungsgemeinschaft[19-2];Deutsche Forschungsgemeinschaft[20021702/GRK2326];Guangdong Provincial Key Laboratory Of Computational Science And Material Design[2019B030301001];Deutsche Forschungsgemeinschaft[22-1];Deutsche Forschungsgemeinschaft[23-1];Deutsche Forschungsgemeinschaft[333849990/IRTG-2379];National Science Foundation[DMS-1818684];National Science Foundation[DMS-2208438];Deutsche Forschungsgemeinschaft[Germany's Excellence Strategy EXC-2023 Internet of Production 390621612];Deutsche Forschungsgemeinschaft[HE5386/18-1];Deutsche Forschungsgemeinschaft[SFB/TRR 146 Multiscale Simulation Methods for Soft Matter Systems];
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:000879385400002
出版者
EI入藏号
20224413017624
EI主题词
Gas dynamics ; Nonlinear equations ; Numerical methods ; Partial differential equations
EI分类号
Fluid Flow, General:631.1 ; Gas Dynamics:631.1.2 ; Mathematics:921 ; Calculus:921.2 ; Numerical Methods:921.6
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85140437212
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411741
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.Department of Mathematics,North Carolina State University,Raleigh,27695,United States
2.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Mathematics,RWTH Aachen University,Aachen,52056,Germany
4.Department of Mathematics,SUSTech International Center for Mathematics,Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China
5.Institute of Mathematics,University of Mainz,Germany
通讯作者单位数学系
推荐引用方式
GB/T 7714
Chertock,Alina,Chu,Shaoshuai,Herty,Michael,et al. Local characteristic decomposition based central-upwind scheme[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2023,473.
APA
Chertock,Alina,Chu,Shaoshuai,Herty,Michael,Kurganov,Alexander,&Lukáčová-Medvid'ová,Mária.(2023).Local characteristic decomposition based central-upwind scheme.JOURNAL OF COMPUTATIONAL PHYSICS,473.
MLA
Chertock,Alina,et al."Local characteristic decomposition based central-upwind scheme".JOURNAL OF COMPUTATIONAL PHYSICS 473(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chertock,Alina]的文章
[Chu,Shaoshuai]的文章
[Herty,Michael]的文章
百度学术
百度学术中相似的文章
[Chertock,Alina]的文章
[Chu,Shaoshuai]的文章
[Herty,Michael]的文章
必应学术
必应学术中相似的文章
[Chertock,Alina]的文章
[Chu,Shaoshuai]的文章
[Herty,Michael]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。