中文版 | English
题名

Fitness Landscape Analysis and Niching Genetic Algorithm for Hybrid Beamforming in RIS-Aided Communications

作者
通讯作者Jin Zhang
发表日期
2022-12-05
DOI
发表期刊
ISSN
1568-4946
EISSN
1872-9681
卷号131
摘要
Reconfigurable intelligent surface (RIS) is a revolutionizing technology to achieve cost-effective com-munications. The active beamforming at the base station (BS) and the discrete phase shifts at RIS should be jointly designed to customize the propagation environment. However, current phase-shift setting methods ignore the non-separable property of phase shifts, degrading the performance, especially in cases with a large-sized RIS. To understand the problem characteristics related to the phase shifts and further tailor an eligible method with such characteristics, this paper, for the first time, analyzes the fitness landscape of the sum-rate maximization problem (maximizing the sum rate of users in a downlink multi-user multiple-input single-output system assisted by a RIS). Results show that the problem has a severe unstructured and rugged landscape, especially in cases with a large-sized RIS. This observation answers why current methods are ineligible and provides insightful guidance for designing a more intelligent method. With the landscape findings in mind, this paper introduces a niching genetic algorithm to solve the problem. In particular, the niching idea is employed to locate multiple local optima. These local optima act as stepping stones to facilitate approaching the global optima. Simulation results demonstrate that the proposed niching genetic algorithm obtains significant capacity gains over current methods in cases with large-sized RIS.(c) 2022 Published by Elsevier B.V.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
[61701216] ; [JCYJ20180507181527806] ; [2020B121201001] ; [2016ZT06G587] ; [KYTDPT20181011104007]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000895417000003
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
人工提交
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/411784
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen 518055, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
3.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen 518055, China
4.School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
5.Peng Cheng Laboratory, Shenzhen 518000, China
6.Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, NSW 2007, Australia
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系;  南方科技大学
通讯作者单位计算机科学与工程系;  南方科技大学
第一作者的第一单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Bai Yan,Qi Zhao,Menke Li,et al. Fitness Landscape Analysis and Niching Genetic Algorithm for Hybrid Beamforming in RIS-Aided Communications[J]. APPLIED SOFT COMPUTING,2022,131.
APA
Bai Yan,Qi Zhao,Menke Li,Jin Zhang,J. Andrew Zhang,&Xin Yao.(2022).Fitness Landscape Analysis and Niching Genetic Algorithm for Hybrid Beamforming in RIS-Aided Communications.APPLIED SOFT COMPUTING,131.
MLA
Bai Yan,et al."Fitness Landscape Analysis and Niching Genetic Algorithm for Hybrid Beamforming in RIS-Aided Communications".APPLIED SOFT COMPUTING 131(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2022-Fitness Landsca(935KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bai Yan]的文章
[Qi Zhao]的文章
[Menke Li]的文章
百度学术
百度学术中相似的文章
[Bai Yan]的文章
[Qi Zhao]的文章
[Menke Li]的文章
必应学术
必应学术中相似的文章
[Bai Yan]的文章
[Qi Zhao]的文章
[Menke Li]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2022-Fitness Landscape Analysis and Niching Genetic Algorithm for Hybrid Beamforming in RIS-Aided Communications.pdf
格式: Adobe PDF
文件名: 2022-Fitness Landscape Analysis and Niching Genetic Algorithm for Hybrid Beamforming in RIS-Aided Communications.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。