题名 | Fitness Landscape Analysis and Niching Genetic Algorithm for Hybrid Beamforming in RIS-Aided Communications |
作者 | |
通讯作者 | Jin Zhang |
发表日期 | 2022-12-05
|
DOI | |
发表期刊 | |
ISSN | 1568-4946
|
EISSN | 1872-9681
|
卷号 | 131 |
摘要 | Reconfigurable intelligent surface (RIS) is a revolutionizing technology to achieve cost-effective com-munications. The active beamforming at the base station (BS) and the discrete phase shifts at RIS should be jointly designed to customize the propagation environment. However, current phase-shift setting methods ignore the non-separable property of phase shifts, degrading the performance, especially in cases with a large-sized RIS. To understand the problem characteristics related to the phase shifts and further tailor an eligible method with such characteristics, this paper, for the first time, analyzes the fitness landscape of the sum-rate maximization problem (maximizing the sum rate of users in a downlink multi-user multiple-input single-output system assisted by a RIS). Results show that the problem has a severe unstructured and rugged landscape, especially in cases with a large-sized RIS. This observation answers why current methods are ineligible and provides insightful guidance for designing a more intelligent method. With the landscape findings in mind, this paper introduces a niching genetic algorithm to solve the problem. In particular, the niching idea is employed to locate multiple local optima. These local optima act as stepping stones to facilitate approaching the global optima. Simulation results demonstrate that the proposed niching genetic algorithm obtains significant capacity gains over current methods in cases with large-sized RIS.(c) 2022 Published by Elsevier B.V. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | [61701216]
; [JCYJ20180507181527806]
; [2020B121201001]
; [2016ZT06G587]
; [KYTDPT20181011104007]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
|
WOS记录号 | WOS:000895417000003
|
出版者 | |
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/411784 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen 518055, China 2.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 3.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen 518055, China 4.School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China 5.Peng Cheng Laboratory, Shenzhen 518000, China 6.Global Big Data Technologies Centre (GBDTC), University of Technology Sydney, NSW 2007, Australia |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系; 南方科技大学 |
通讯作者单位 | 计算机科学与工程系; 南方科技大学 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Bai Yan,Qi Zhao,Menke Li,et al. Fitness Landscape Analysis and Niching Genetic Algorithm for Hybrid Beamforming in RIS-Aided Communications[J]. APPLIED SOFT COMPUTING,2022,131.
|
APA |
Bai Yan,Qi Zhao,Menke Li,Jin Zhang,J. Andrew Zhang,&Xin Yao.(2022).Fitness Landscape Analysis and Niching Genetic Algorithm for Hybrid Beamforming in RIS-Aided Communications.APPLIED SOFT COMPUTING,131.
|
MLA |
Bai Yan,et al."Fitness Landscape Analysis and Niching Genetic Algorithm for Hybrid Beamforming in RIS-Aided Communications".APPLIED SOFT COMPUTING 131(2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2022-Fitness Landsca(935KB) | -- | -- | 开放获取 | -- | 浏览 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论